68 research outputs found

    Prevention of Apoptosis by Mitochondrial Phosphatase PGAM5 in the Mushroom Body Is Crucial for Heat Shock Resistance in Drosophila melanogaster

    Get PDF
    The heat shock (HS) response is essential for survival of all organisms. Although the machinery of the HS response has been extensively investigated at the cellular level, it is poorly understood at the level of the organism. Here, we show the crucial role of the mushroom body (MB) in the HS response in Drosophila. Null mutants of the mitochondrial phosphatase Drosophila PGAM5 (dPGAM5) exhibited increased vulnerability to HS, which was reversed by MB-specific expression of the caspase inhibitor p35, and similar vulnerability was induced in wild-type flies by knockdown of MB dPGAM5. Elimination of the MB did not affect the HS response of wild-type flies, but did increase the resistance of dPGAM5-deficient flies to HS. Thus, the MB may possess an apoptosis-dependent toxic function, the suppression of which by dPGAM5 appears to be crucial for HS resistance

    Multiple Wnts Redundantly Control Polarity Orientation in Caenorhabditis elegans Epithelial Stem Cells

    Get PDF
    During development, cell polarization is often coordinated to harmonize tissue patterning and morphogenesis. However, how extrinsic signals synchronize cell polarization is not understood. In Caenorhabditis elegans, most mitotic cells are polarized along the anterior-posterior axis and divide asymmetrically. Although this process is regulated by a Wnt-signaling pathway, Wnts functioning in cell polarity have been demonstrated in only a few cells. We analyzed how Wnts control cell polarity, using compound Wnt mutants, including animals with mutations in all five Wnt genes. We found that somatic gonadal precursor cells (SGPs) are properly polarized and oriented in quintuple Wnt mutants, suggesting Wnts are dispensable for the SGPs' polarity, which instead requires signals from the germ cells. Thus, signals from the germ cells organize the C. elegans somatic gonad. In contrast, in compound but not single Wnt mutants, most of the six seam cells, V1–V6 (which are epithelial stem cells), retain their polarization, but their polar orientation becomes random, indicating that it is redundantly regulated by multiple Wnt genes. In contrast, in animals in which the functions of three Wnt receptors (LIN-17, MOM-5, and CAM-1) are disrupted—the stem cells are not polarized and divide symmetrically—suggesting that the Wnt receptors are essential for generating polarity and that they function even in the absence of Wnts. All the seam cells except V5 were polarized properly by a single Wnt gene expressed at the cell's anterior or posterior. The ectopic expression of posteriorly expressed Wnts in an anterior region and vice versa rescued polarity defects in compound Wnt mutants, raising two possibilities: one, Wnts permissively control the orientation of polarity; or two, Wnt functions are instructive, but which orientation they specify is determined by the cells that express them. Our results provide a paradigm for understanding how cell polarity is coordinated by extrinsic signals

    Silkworm Coatomers and Their Role in Tube Expansion of Posterior Silkgland

    Get PDF
    Background: Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgito-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation. Methodology/Principal Findings: Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (a,b,b9, d, e, and f-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of a-, b9- and c-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of a-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion. Conclusions/Significance: The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and woul

    Microanatomy of the optic canal

    No full text

    High-dose steroid therapy for idiopathic optic perineuritis: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>It has been reported that the prognosis of optic perineuritis may be poor when initiation of treatment is delayed. Here we report the successful treatment of three patients with idiopathic optic perineuritis, including two in whom initiation of therapy was delayed.</p> <p>Case presentation</p> <p>Three Japanese patients (two women aged 73 and 66 years, and one man aged 27 years) presented with loss of vision (for five months, several months, and two months respectively) and pain on eye movement in the third case only, and were diagnosed as having idiopathic optic perineuritis. Fat-suppressed T2-weighted magnetic resonance images showed high signal intensity areas around the affected optic nerves, suggesting the presence of optic perineuritis. Two patients received steroid pulse therapy and the third was given high-dose steroid therapy. The visual acuity improved in all three cases.</p> <p>Conclusion</p> <p>High-dose steroid therapy may be effective for idiopathic perineuritis in patients without optic nerve atrophy, even if initial treatment (including moderate-dose steroids) has failed.</p
    • …
    corecore