1,464 research outputs found
Low-power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays
All-optical magnetic switching promises ultrafast magnetization control without a magnetic field. Existing schemes typically require power-hungry femtosecond-pulsed lasers and complex magnetic materials. Here, we demonstrate deterministic, all-optical magnetic switching in simple ferromagnetic nanomagnets (Ni81Fe19, Ni50Fe50) with sub-diffraction limit dimensions using a focused low-power, linearly polarized continuous-wave laser. Isolated nanomagnets are switched across a range of dimensions, laser wavelengths, and powers. All square-geometry artificial spin ice vertex configurations are written at low powers (2.74 mW). Usually, switching with linearly polarized light is symmetry forbidden; here, the laser spot has a similar size to the nanomagnets, producing an absorption distribution that depends on the nanoisland-spot displacement. We attribute the deterministic switching to the transient dynamics of this asymmetric absorption. No switching is observed in Co or Ni nanostructures, suggesting the multi-species nature of NiFe plays a role. These results usher in inexpensive, low-power, optically controlled devices with impact across data storage, neuromorphic computation, and reconfigurable magnonics
Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy
Thirty-nine Type 1 (insulin-dependent) diabetic patients were studied prospectively after simultaneous pancreas and kidney (n=26) and kidney grafting alone (n=13) by measuring heart rate variation during various manoeuvers and answering a standardized questionnaire every 6 to 12 months post-transplant. While age, duration of diabetes, and serum creatinine (168.1±35.4 vs 132.7±17.7 mgrmol/l) were comparable, haemoglobin A1 levels were significantly lower (6.6±0.2 vs 8.5±0.3%; p<0.01) and the mean observation time longer (35±2 vs 25±3 months; p<0.05) in the pancreas recipients when compared with kidney transplanted patients. Heart rate variation during deep breathing, lying/standing and Valsalva manoeuver were very similar in both groups initially and did not improve during follow-up. However, there was a significant reduction in heart rate in the pancreas recipient group. Autonomic symptoms of the gastrointestinal and thermoregulatory system improved more in the pancreas grafted subjects, while hypoglycaemia unawareness deteriorated in the kidney recipients. This study suggests that long-term normoglycaemia by successful pancreatic grafting is able to halt the progression of autonomic dysfunction
Low-power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays
All-optical magnetic switching promises ultrafast magnetization control without a magnetic field. Existing schemes typically require power-hungry femtosecond-pulsed lasers and complex magnetic materials. Here, we demonstrate deterministic, all-optical magnetic switching in simple ferromagnetic nanomagnets (Ni81Fe19, Ni50Fe50) with sub-diffraction limit dimensions using a focused low-power, linearly polarized continuous-wave laser. Isolated nanomagnets are switched across a range of dimensions, laser wavelengths, and powers. All square-geometry artificial spin ice vertex configurations are written at low powers (2.74 mW). Usually, switching with linearly polarized light is symmetry forbidden; here, the laser spot has a similar size to the nanomagnets, producing an absorption distribution that depends on the nanoisland-spot displacement. We attribute the deterministic switching to the transient dynamics of this asymmetric absorption. No switching is observed in Co or Ni nanostructures, suggesting the multi-species nature of NiFe plays a role. These results usher in inexpensive, low-power, optically controlled devices with impact across data storage, neuromorphic computation, and reconfigurable magnonics
Arduous implementation: Does the Normalisation Process Model explain why it's so difficult to embed decision support technologies for patients in routine clinical practice
Background: decision support technologies (DSTs, also known as decision aids) help patients and professionals take part in collaborative decision-making processes. Trials have shown favorable impacts on patient knowledge, satisfaction, decisional conflict and confidence. However, they have not become routinely embedded in health care settings. Few studies have approached this issue using a theoretical framework. We explained problems of implementing DSTs using the Normalization Process Model, a conceptual model that focuses attention on how complex interventions become routinely embedded in practice.Methods: the Normalization Process Model was used as the basis of conceptual analysis of the outcomes of previous primary research and reviews. Using a virtual working environment we applied the model and its main concepts to examine: the 'workability' of DSTs in professional-patient interactions; how DSTs affect knowledge relations between their users; how DSTs impact on users' skills and performance; and the impact of DSTs on the allocation of organizational resources.Results: conceptual analysis using the Normalization Process Model provided insight on implementation problems for DSTs in routine settings. Current research focuses mainly on the interactional workability of these technologies, but factors related to divisions of labor and health care, and the organizational contexts in which DSTs are used, are poorly described and understood.Conclusion: the model successfully provided a framework for helping to identify factors that promote and inhibit the implementation of DSTs in healthcare and gave us insights into factors influencing the introduction of new technologies into contexts where negotiations are characterized by asymmetries of power and knowledge. Future research and development on the deployment of DSTs needs to take a more holistic approach and give emphasis to the structural conditions and social norms in which these technologies are enacte
Review for the generalist: evaluation of anterior knee pain
Anterior knee pain is common in children and adolescents. Evaluation and management is challenging and requires a thorough history and physical exam, and understanding of the pediatric skeleton. This article will review common causes of chronic anterior knee pain in the pediatric population with a focus on patellofemoral pain
Can electronic search engines optimize screening of search results in systematic reviews: an empirical study
BACKGROUND: Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG(® )and Ovid™. Our objective is to test the ability of an Ultraseek(® )search engine to rank MEDLINE(® )records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. METHODS: Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS), provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000–6000 records when the MEDLINE search strategy was replicated. RESULTS: Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. CONCLUSION: The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of bibliographic records that have been pre-screened by systematic reviewers
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Fas/FasL-mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application
The Fas/FasL system plays an important role in apoptosis, the inflammatory response and gliosis in a variety of neurologic disorders. A better understanding of these mechanisms could lead to effective therapeutic strategies following spinal cord injury (SCI). We explored these mechanisms by examining molecular changes in postmortem human spinal cord tissue from cases with acute and chronic SCI. Complementary studies were conducted using the in vivo Fejota™ clip compression model of SCI in Fas-deficient B6.MRL-Fas-lpr (lpr) and wild-type (Wt) mice to test Fas-mediated apoptosis, inflammation, gliosis and axonal degeneration by immunohistochemistry, Western blotting, gelatin zymography and ELISA with Mouse 32-plex cytokine/chemokine panel bead immunoassay. We report novel evidence that shows that Fas-mediated apoptosis of neurons and oligodendrocytes occurred in the injury epicenter in all cases of acute and subacute SCI and not in chronic SCI or in control cases. We also found significantly reduced apoptosis, expression of GFAP, NF-κB, p-IKappaB and iba1, increased number of CD4 positive T cells and MMP2 expression and reduced neurological dysfunction in lpr mice when compared with Wt mice after SCI. We found dramatically reduced inflammation and cytokines and chemokine expression in B6.MRL-Fas-lpr mice compared to Wt mice after SCI. In conclusion, we report multiple lines of evidence that Fas/FasL activation plays a pivotal role in mediating apoptosis, the inflammatory response and neurodegeneration after SCI, providing a compelling rationale for therapeutically targeting Fas in human SCI
Key stages in mammary gland development: The mammary end bud as a motile organ
In the rodent, epithelial end buds define the tips of elongating mammary ducts. These highly motile structures undergo repeated dichotomous branching as they aggressively advance through fatty stroma and, turning to avoid other ducts, they finally cease growth leaving behind the open, tree-like framework on which secretory alveoli develop during pregnancy. This review identifies the motility of end buds as a unique developmental marker that represents the successful integration of systemic and local mammotrophic influences, and covers relevant advances in ductal growth regulation, extracellular matrix (ECM) remodeling, and cell adhesion in the inner end bud. An unexpected growth-promoting synergy between insulin-like growth factor-1 and progesterone, in which ducts elongate without forming new end buds, is described as well as evidence strongly supporting self-inhibition of ductal elongation by end-bud-secreted transforming growth factor-β acting on stromal targets. The influence of the matrix metalloproteinase ECM-remodeling enzymes, notably matrix metalloproteinase-2, on end bud growth is discussed in the broader context of enzymes that regulate the polysaccharide-rich glycosaminoglycan elements of the ECM. Finally, a critical, motility-enabling role for the cellular architecture of the end bud is identified and the contribution of cadherins, the netrin/neogenin system, and ErbB2 to the structure and motility of end buds is discussed
- …