1,559 research outputs found

    Connectivity transition in the frustrated S=1 chain revisited

    Full text link
    The phase transition in the antiferromagnetic isotropic Heisenberg S=1 chain with frustrating next-nearest neighbor coupling alpha is reconsidered. We identify the order parameter of the large-alpha phase as describing two intertwined strings, each possessing a usual string order. The transition has a topological nature determined by the change in the string connectivity. Numerical evidence from the DMRG results is supported by the effective theory based on soliton states.Comment: 4 pages, 2 figures, Revtex 4, submitted to PR

    Finite-temperature scalar fields and the cosmological constant in an Einstein universe

    Get PDF
    We study the back reaction effect of massless minimally coupled scalar field at finite temperatures in the background of Einstein universe. Substituting for the vacuum expectation value of the components of the energy-momentum tensor on the RHS of the Einstein equation, we deduce a relationship between the radius of the universe and its temperature. This relationship exhibit a maximum temperature, below the Planck scale, at which the system changes its behaviour drastically. The results are compared with the case of a conformally coupled field. An investigation into the values of the cosmological constant exhibit a remarkable difference between the conformally coupled case and the minimally coupled one.Comment: 7 pages, 2 figure

    Spontaneous symmetry breaking in gauge theories via Bose-Einstein condensation

    Full text link
    We propose a mechanism naturally leading to the spontaneous symmetry breaking in a gauge theory. The Higgs field is assumed to have global and gauged internal symmetries. We associate a non zero chemical potential to one of the globally conserved charges commuting with all of the gauge transformations. This induces a negative mass squared for the Higgs field triggering the spontaneous symmetry breaking of the global and local symmetries. The mechanism is general and we test the idea for the electroweak theory in which the Higgs sector is extended to possess an extra global Abelian symmetry. To this symmetry we associate a non zero chemical potential. The Bose-Einstein condensation of the Higgs leads, at tree level, to modified dispersion relations for the Higgs field while the dispersion relations of the gauge bosons and fermions remain undisturbed. The latter are modified through higher order corrections. We have computed some corrections to the vacuum polarizations of the gauge bosons and fermions. To quantify the corrections to the gauge boson vacuum polarizations with respect to the Standard Model we considered the effects on the T parameter. We finally derive the one loop modified fermion dispersion relations.Comment: RevTeX 4, 13 pages. Added references and corrected typo

    Grassmann Variables and the Jaynes-Cummings Model

    Get PDF
    This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the two level atom) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiation can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, where the correspondence rules for bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as for initially uncorrelated states, are used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enables the six coupled equations for the new c-number functions (also equivalent to the canonical Grassmann distribution function) to be solved analytically, based on an ansatz from a 1980 paper by Stenholm. It is then shown that the distribution function is the same as that determined from the well-known solution based on coupled equations for state vector amplitudes of atomic and n-photon product states. The treatment of the simple two fermion mode Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for multi-mode fermionic applications in quantum-atom optics.Comment: 57 pages, 0 figures. Version

    Variational and DMRG studies of the Frustrated Antiferromagnetic Heisenberg S=1 Quantum Spin Chain

    Full text link
    We study a frustrated antiferromagnetic isotropic Heisenberg S=1S=1 chain using a variational ansatz and the DMRG. At αD=0.284(1)\alpha_D=0.284(1), there is a disorder point of the second kind, marking the onset of incommensurate correlations in the chain. At αL=0.3725(25)\alpha_L=0.3725(25) there is a Lifshitz point, at which the excitation spectrum develops a doubly degenerate structure. These points are the quantum remnants of the transition from antiferromagnetic to spiral order in the classical frustrated chain. At αT=0.7444(6)\alpha_T=0.7444(6) there is a first order phase transition from an AKLT phase to a next-nearest neighbor generalization of the AKLT model. At the transition, the string order parameter shows a discontinuous jump of 0.085 to 0; the correlation length and the gap are both finite at the transition. The problem of edge states in open frustrated chains is discussed at length.Comment: 37 pages, 14 figures, submitted to Phys.Rev.

    Franck-Condon Effect in Central Spin System

    Full text link
    We study the quantum transitions of a central spin surrounded by a collective-spin environment. It is found that the influence of the environmental spins on the absorption spectrum of the central spin can be explained with the analog of the Franck-Condon (FC) effect in conventional electron-phonon interaction system. Here, the collective spins of the environment behave as the vibrational mode, which makes the electron to be transitioned mainly with the so-called "vertical transitions" in the conventional FC effect. The "vertical transition" for the central spin in the spin environment manifests as, the certain collective spin states of the environment is favored, which corresponds to the minimal change in the average of the total spin angular momentum.Comment: 8 pages, 8 figure

    Continuity theorems for the M/M/1/nM/M/1/n queueing system

    Full text link
    In this paper continuity theorems are established for the number of losses during a busy period of the M/M/1/nM/M/1/n queue. We consider an M/GI/1/nM/GI/1/n queueing system where the service time probability distribution, slightly different in a certain sense from the exponential distribution, is approximated by that exponential distribution. Continuity theorems are obtained in the form of one or two-sided stochastic inequalities. The paper shows how the bounds of these inequalities are changed if further assumptions, associated with specific properties of the service time distribution (precisely described in the paper), are made. Specifically, some parametric families of service time distributions are discussed, and the paper establishes uniform estimates (given for all possible values of the parameter) and local estimates (where the parameter is fixed and takes only the given value). The analysis of the paper is based on the level crossing approach and some characterization properties of the exponential distribution.Comment: Final revision; will be published as i
    corecore