1,286 research outputs found

    DLA Class II Alleles Are Associated with Risk for Canine Symmetrical Lupoid Onychodystropy (SLO)

    Get PDF
    Symmetrical lupoid onychodystrophy (SLO) is an immune-mediated disease in dogs affecting the claws with a suggested autoimmune aethiology. Sequence-based genotyping of the polymorphic exon 2 from DLA-DRB1, -DQA1, and -DQB1 class II loci were performed in a total of 98 SLO Gordon setter cases and 98 healthy controls. A risk haplotype (DRB1*01801/DQA1*00101/DQB1*00802) was present in 53% of cases and 34% of controls and conferred an elevated risk of developing SLO with an odds ratio (OR) of 2.1. When dogs homozygous for the risk haplotype were compared to all dogs not carrying the haplotype the OR was 5.4. However, a stronger protective haplotype (DRB1*02001/DQA1*00401/DQB1*01303, OR = 0.03, 1/OR = 33) was present in 16.8% of controls, but only in a single case (0.5%). The effect of the protective haplotype was clearly stronger than the risk haplotype, since 11.2% of the controls were heterozygous for the risk and protective haplotypes, whereas this combination was absent from cases. When the dogs with the protective haplotype were excluded, an OR of 2.5 was obtained when dogs homozygous for the risk haplotype were compared to those heterozygous for the risk haplotype, suggesting a co-dominant effect of the risk haplotype. In smaller sample sizes of the bearded collie and giant schnauzer breeds we found the same or similar haplotypes, sharing the same DQA1 allele, over-represented among the cases suggesting that the risk is associated primarily with DLA-DQ. We obtained conclusive results that DLA class II is significantly associated with risk of developing SLO in Gordon setters, thus supporting that SLO is an immune-mediated disease. Further studies of SLO in dogs may provide important insight into immune privilege of the nail apparatus and also knowledge about a number of inflammatory disorders of the nail apparatus like lichen planus, psoriasis, alopecia areata and onycholysis

    A gene signature for post-infectious chronic fatigue syndrome

    Get PDF
    Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment

    Obesity Reduces Bone Density Associated with Activation of PPARγ and Suppression of Wnt/β-Catenin in Rapidly Growing Male Rats

    Get PDF
    BACKGROUND: It is well established that excessive consumption of a high fat diet (HFD) results in obesity; however, the consequences of obesity on postnatal skeletal development have not been well studied. METHODOLOGY AND PRINCIPAL FINDINGS: Total enteral nutrition (TEN) was used to feed postnatal day 27 male rats intragastrically with a high 45% fat diet (HFD) for four weeks to induce obesity. Fat mass was increased compared to rats fed TEN diets containing 25% fat (medium fat diet, MFD) or a chow diet (low fat diet, LFD) fed ad libitum with matched body weight gains. Serum leptin and total non-esterified fatty acids (NEFA) were elevated in HFD rats, which also had reduced bone mass compared to LFD-fed animals. This was accompanied by decreases in bone formation, but increases in the bone resorption. Bone marrow adiposity and expression of adipogenic genes, PPARγ and aP2 were increased, whereas osteoblastogenic markers osteocalcin and Runx2 were decreased, in bone in HFD rats compared to LFD controls. The diversion of stromal cell differentiation in response to HFD stemmed from down-regulation of the key canonical Wnt signaling molecule β-catenin protein and reciprocal up-regulation of nuclear PPARγ expression in bone. In a set of in vitro studies using pluripotent ST2 bone marrow mesenchymal stromal cells treated with serum from rats on the different diets or using the free fatty acid composition of NEFA quantified in rat serum from HFD-fed animals by GC-MS, we were able to recapitulate our in vivo findings. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that increased NEFA in serum from rats made obese by HFD-feeding impaired bone formation due to stimulation of bone marrow adipogenesis. These effects of obesity on bone in early life may result in impaired attainment of peak bone mass and therefore increase the prevalence of osteoporosis later on in life

    Latherin: A Surfactant Protein of Horse Sweat and Saliva

    Get PDF
    Horses are unusual in producing protein-rich sweat for thermoregulation, a major component of which is latherin, a highly surface-active, non-glycosylated protein. The amino acid sequence of latherin, determined from cDNA analysis, is highly conserved across four geographically dispersed equid species (horse, zebra, onager, ass), and is similar to a family of proteins only found previously in the oral cavity and associated tissues of mammals. Latherin produces a significant reduction in water surface tension at low concentrations (≤1 mg ml−1), and therefore probably acts as a wetting agent to facilitate evaporative cooling through a waterproofed pelt. Neutron reflection experiments indicate that this detergent-like activity is associated with the formation of a dense protein layer, about 10 Å thick, at the air-water interface. However, biophysical characterization (circular dichroism, differential scanning calorimetry) in solution shows that latherin behaves like a typical globular protein, although with unusual intrinsic fluorescence characteristics, suggesting that significant conformational change or unfolding of the protein is required for assembly of the air-water interfacial layer. RT-PCR screening revealed latherin transcripts in horse skin and salivary gland but in no other tissues. Recombinant latherin produced in bacteria was also found to be the target of IgE antibody from horse-allergic subjects. Equids therefore may have adapted an oral/salivary mucosal protein for two purposes peculiar to their lifestyle, namely their need for rapid and efficient heat dissipation and their specialisation for masticating and processing large quantities of dry food material

    Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Major Histocompatibility Complex (MHC) is a cluster of genes involved in the vertebrate immune system and includes loci with an extraordinary number of alleles. Due to the complex evolution of MHC genes, alleles from different loci within the same MHC class can be very similar and therefore difficult to assign to separate loci. Consequently, single locus amplification of MHC genes is hard to carry out in species with recently duplicated genes in the same MHC class, and multiple MHC loci have to be genotyped simultaneously. Since amplified alleles have the same length, accurate genotyping is difficult. Reference Strand-Mediated Conformational Analysis (RSCA), which is increasingly used in studies of natural populations with multiple MHC genes, is a genotyping method capable to provide high resolution and accuracy in such cases.</p> <p>Findings</p> <p>We adapted the RSCA method to genotype multiple MHC class II B (BLB) genes in black grouse (<it>Tetrao tetrix</it>), a non-model galliform bird species, using a 96-Capillary Array Electrophoresis, the MegaBACEâ„¢ 1000 DNA Analysing System (GE Healthcare). In this study we used fluorescently labelled reference strands from both black grouse and hazel grouse and observed good agreement between RSCA and cloning/sequencing since 71 alleles were observed by cloning/sequencing and 76 alleles by RSCA among the 24 individuals included in the comparison. At the individual level however, there was a trend towards more alleles scored with RSCA (1-6 per individual) than cloning/sequencing (1-4 per individual). In 63% of the pair-wise comparison, the identical allele was scored in RSCA as in cloning/sequencing. Nine out of 24 individuals had the same number of alleles in RSCA as in cloning/sequencing. Our RSCA protocol allows a faster RSCA genotyping than presented in many other RSCA studies.</p> <p>Conclusions</p> <p>In this study, we have developed the RSCA typing method further to work on a 96-Capillary Array Electrophoresis (MegaBACEâ„¢ 1000). Our RSCA protocol can be applied to fast and reliable screening of MHC class II B diversity of black grouse populations. This will facilitate future large-scale population studies of black grouse and other galliformes species with multiple inseparable MHC loci.</p

    Composite GUTs: models and expectations at the LHC

    Get PDF
    We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Higgs and the top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum numbers. We analyse the signatures of these composite partners at hadron colliders: distinctive final states contain multiple top and bottom quarks, either alone or accompanied by a heavy stable charged particle, or by missing transverse energy.Comment: 55 pages, 13 figures, final version to be published in JHE

    Closing the osteoporosis care gap – Increased osteoporosis awareness among geriatrics and rehabilitation teams

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A care gap exists between recommendations and practice regarding the diagnosis and treatment of osteoporosis in fracture patients. The current study was designed to determine rates and predictors of in-hospital diagnosis and treatment of osteoporosis in patients admitted with fragility hip fractures, and to assess differences in these rates since the outset of the multipronged "Fracture? Think Osteoporosis" (FTOP) Program, which includes education of geriatrics and rehabilitation teams.</p> <p>Methods</p> <p>This is a retrospective cohort study conducted with data from two Hamilton, Ontario, university-based tertiary-care hospitals, and represents a follow-up to a previous study conducted 8 years earlier. Data pertaining to all 354 patients, age >/= 50, admitted between March 2003 and April 2004, inclusive, with a diagnosis of fragility hip fracture were evaluated. Twelve patients were excluded leaving 342 patients for analysis, with 75% female, mean age 81.</p> <p>Outcomes included: Primary – In-hospital diagnosis of osteoporosis and/or initiation of anti-resorptive treatment ("new osteoporosis diagnosis/treatment"). Secondary – In-hospital mortality, BMD referrals, pre-admission osteoporosis diagnosis and treatment.</p> <p>Results</p> <p>At admission, 27.8% of patients had a pre-existing diagnosis of osteoporosis and/or were taking anti-resorptive treatment. Among patients with no previous osteoporosis diagnosis/treatment: 35.7% received a new diagnosis of osteoporosis, 21% were initiated on anti-resorptive treatment, and 14.3% received a BMD referral. The greatest predictor of new osteoporosis diagnosis/treatment was transfer to a rehabilitation or geriatrics unit: 79.5% of rehabilitation/geriatrics versus 18.5% of patients receiving only orthopedics care met this outcome (p < 0.001).</p> <p>Conclusion</p> <p>New diagnosis of osteoporosis among patients admitted with hip fracture has improved from 1.8% in the mid 1990's to 35.7%. Initiation of bisphosphonate therapy has likewise improved from 0% to 21%. Although multiple factors have likely contributed, the differential response between rehabilitation/geriatrics versus orthopedics patients suggests that education of the geriatric and rehabilitation teams, including one-on-one and group-based sessions, implemented as part of the FTOP Program, has played a role in this improvement. A significant care gap still exists for patients discharged directly from orthopedic units. The application of targeted inpatient and post-discharge initiatives, such as those that comprise the entire FTOP Program, may be of particular value in this setting.</p

    Global and regional brain metabolic scaling and its functional consequences

    Get PDF
    Background: Information processing in the brain requires large amounts of metabolic energy, the spatial distribution of which is highly heterogeneous reflecting complex activity patterns in the mammalian brain. Results: Here, it is found based on empirical data that, despite this heterogeneity, the volume-specific cerebral glucose metabolic rate of many different brain structures scales with brain volume with almost the same exponent around -0.15. The exception is white matter, the metabolism of which seems to scale with a standard specific exponent -1/4. The scaling exponents for the total oxygen and glucose consumptions in the brain in relation to its volume are identical and equal to 0.86±0.030.86\pm 0.03, which is significantly larger than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on body mass. Conclusions: These findings show explicitly that in mammals (i) volume-specific scaling exponents of the cerebral energy expenditure in different brain parts are approximately constant (except brain stem structures), and (ii) the total cerebral metabolic exponent against brain volume is greater than the much-cited Kleiber's 3/4 exponent. The neurophysiological factors that might account for the regional uniformity of the exponents and for the excessive scaling of the total brain metabolism are discussed, along with the relationship between brain metabolic scaling and computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen

    Geographic Variation of Strontium and Hydrogen Isotopes in Avian Tissue: Implications for Tracking Migration and Dispersal

    Get PDF
    Background: Isotopes can provide unique solutions to fundamental problems related to the ecology and evolution of migration and dispersal because prior movements of individuals can theoretically be tracked from tissues collected from a single capture. However, there is still remarkably little information available about how and why isotopes vary in wild animal tissues, especially over large spatial scales. Methodology/Principal Findings: Here, we describe variation in both stable-hydrogen (dDF) and strontium ( 87Sr/86SrF) isotopic compositions in the feathers of a migratory songbird, the Tree Swallow (Tachycineta bicolor), across 18 sampling sites in North America and then examine potential mechanisms driving this variation. We found that dDF was correlated with latitude of the sampling site, whereas 87Sr/86SrF was correlated with longitude. dDF was related to dD of meteoric waters where molting occurred and 87Sr/86SrF was influenced primarily by the geology in the area where feathers were grown. Using simulation models, we then assessed the utility of combining both markers to estimate the origin of individuals. Using 13 geographic regions, we found that the number of individuals correctly assigned to their site of origin increased from less than 40 % using either dD or 87Sr/86Sr alone to 74 % using both isotopes. Conclusions/Significance: Our results suggest that these isotopes have the potential to provide predictable an
    • …
    corecore