30,440 research outputs found

    Report on the development of the Manned Orbital Research Laboratory /MORL/ system utilization potential. Task area IV - MORL SYSTEM improvement study, book 2

    Get PDF
    Environmental control and life support systems analyses for improved Manned Orbital Research Laborator

    Amplitude squeezed light from a laser

    Get PDF
    Intensity squeezed light was successfully generated using semiconductor lasers with sub-Poissonian pumping. Control of the pumping statistics is crucial and is achieved by a large series resistor which regulates the pump current; its sub-Poissonian statistics are then transferred to the laser output. The sub-Poissonian pumping of other laser systems is not so simple, however, and their potential as squeezed states sources is apparently diminished. We consider a conventional laser incoherently pumped well above threshold, and allow for pump depletion of the ground state. In this regime, sub-Poissonian photon statistics and squeezed amplitude fluctuations are produced

    The Paraldor Project

    Get PDF
    Paraldor is an experiment in bringing the power of categorical languages to lattice QCD computations. Our target language is Aldor, which allows the capture of the mathematical structure of physics directly in the structure of the code using the concepts of categories, domains and their inter-relationships in a way which is not otherwise possible with current popular languages such as Fortran, C, C++ or Java. By writing high level physics code portably in Aldor, and implementing switchable machine dependent high performance back-ends in C or assembler, we gain all the power of categorical languages such as modularity, portability, readability and efficiency.Comment: 4 pages, 2 figures, Lattice 2002 conference proceeding

    Computing the Loewner driving process of random curves in the half plane

    Full text link
    We simulate several models of random curves in the half plane and numerically compute their stochastic driving process (as given by the Loewner equation). Our models include models whose scaling limit is the Schramm-Loewner evolution (SLE) and models for which it is not. We study several tests of whether the driving process is Brownian motion. We find that just testing the normality of the process at a fixed time is not effective at determining if the process is Brownian motion. Tests that involve the independence of the increments of Brownian motion are much more effective. We also study the zipper algorithm for numerically computing the driving function of a simple curve. We give an implementation of this algorithm which runs in a time O(N^1.35) rather than the usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph to conclusion section; improved figures cosmeticall

    Effect of a Spin-1/2 Impurity on the Spin-1 Antiferromagnetic Heisenberg Chain

    Full text link
    Low-lying excited states as well as the ground state of the spin-1 antiferro- magnetic Heisenberg chain with a spin-1/2 impurity are investigated by means of a variational method and a method of numerical diagonalization. It is shown that 1) the impurity spin brings about massive modes in the Haldane gap, 2) when the the impurity-host coupling is sufficiently weak, the phenomenological Hamiltonian used by Hagiwara {\it et al.} in the analysis of ESR experimental results for NENP containing a small amount of spin-1/2 Cu impurities is equivalent to a more realistic Hamiltonian, as far as the energies of the low-lying states are concerned, 3) the results obtained by the variational method are in semi-quantitatively good agreement with those obtained by the numerical diagonalization.Comment: 11 pages, plain TeX (Postscript figures are included), KU-CCS-93-00

    Renormalization group maps for Ising models in lattice gas variables

    Full text link
    Real space renormalization group maps, e.g., the majority rule transformation, map Ising type models to Ising type models on a coarser lattice. We show that each coefficient of the renormalized Hamiltonian in the lattice gas variables depends on only a finite number of values of the renormalized Hamiltonian. We introduce a method which computes the values of the renormalized Hamiltonian with high accuracy and so computes the coefficients in the lattice gas variables with high accuracy. For the critical nearest neighbor Ising model on the square lattice with the majority rule transformation, we compute over 1,000 different coefficients in the lattice gas variable representation of the renormalized Hamiltonian and study the decay of these coefficients. We find that they decay exponentially in some sense but with a slow decay rate. We also show that the coefficients in the spin variables are sensitive to the truncation method used to compute them.Comment: 22 pages, 9 color postscript figures; minor revisions in version

    Making the small oblique parameters large

    Full text link
    We compute the oblique parameters, including the three new parameters V V , W W and X X introduced recently by the Montreal group, for the case of one scalar multiplet of arbitrary weak isospin J J and weak hypercharge Y Y . We show that, when the masses of the heaviest and lightest components of the multiplet remain constant, but J J increases, the oblique parameter U U and the three new oblique parameters increase like J3 J^3 , while T T only increases like J J . For large multiplets with masses not much higher than mZ m_Z , the oblique parameters U U and V V may become much larger than T T and S S .Comment: 9 pages, standard LATEX, 3 figures available from the authors, report CMU-HEP93-17 and DOE-ER/40682-4

    Design of a Torque Current Generator for Strapdown Gyroscopes

    Get PDF
    The design, analysis, and experimental evaluation of an optimum performance torque current generator for use with strapdown gyroscopes, is presented. Among the criteria used to evaluate the design were the following: (1) steady-state accuracy; (2) margins of stability against self-oscillation; (3) temperature variations; (4) aging; (5) static errors drift errors, and transient errors, (6) classical frequency and time domain characteristics; and (7) the equivalent noise at the input of the comparater operational amplifier. The DC feedback loop of the torque current generator was approximated as a second-order system. Stability calculations for gain margins are discussed. Circuit diagrams are shown and block diagrams showing the implementation of the torque current generator are discussed

    Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    Get PDF
    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing
    corecore