5,340 research outputs found

    N-heterocyclic germylenes: structural characterisation of some heavy analogues of the ubiquitous N-heterocyclic carbenes

    Get PDF
    The X-ray crystal structures of three N-heterocyclic germylenes (NHGes) have been elucidated including the previously unknown 1,3-bis(2,6-dimethylphenyl)diazagermol-2-ylidene (1). In addition, the X-ray crystal structures of the previously synthesised 1,3-bis(2,4,6-trimethylphenyl)diazagermol-2-ylidene (2) and 1,3-bis(2,6-diisopropylphenyl)diazagermol-2-ylidene (3) are also reported. The discrete molecular structures of compounds 1 to 3 are comparable, with Ge-N bond lengths in the range 1.835-1.875 Å, while the N-Ge-N bond angles range between 83.6 and 85.2°. Compound 2 was compared to the analogous N-heterocyclic carbene species, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes). The major geometrical difference observed, as expected, was the bond angle around the divalent group 14 atom. The N-Ge-N bond angle was 83.6° for compound 2 versus the N-C-N bond angle of 101.4° for IMes. The Sn equivalent of (1), 1,3-bis(2,6-dimethylphenyl)diazastannol-2-ylidene (4), has also been synthesised and its crystal structure is reported here. In order to test their suitability as ligands, compounds 1 to 3 were reacted with a wide range of transition metal complexes. No NHGes containing metal complexes were observed. In all cases the NHGe either degraded or gave no reaction

    On the various forms of the energy equation for a dilute, monatomic mixture of nonreacting gases

    Get PDF
    In the case of gas mixtures, the governing equations become rather formidable and a complete listing of the equations in their various forms and methods to evaluate the transport coefficients is difficult to find. This paper seeks to compile common, as well as less well known, results in a single document. Various relationships between equations describing conservation of energy for a dilute, monatomic, nonreacting gas in local equilibrium are provided. The gas is treated as nonrelativistic, not subject to magnetic or electric fields, or radiative effects

    Formation of a nonanuclear copper(II) cluster with 3,5-dimethylpyrazolate starting from an NHC complex of copper(I) chloride

    Get PDF
    The complete nonanuclear cluster in bis[1,3-bis(2,6-dimethylphenyl)imidazolium] di--chlorido-tetrachloridooctakis(-3,5-dimethylpyrazolato)hexa-3- hydroxido-nonacopper(II) chloroform disolvate, [HIXy]2[Cu9(-pz*)8(3- OH)6(2-Cl)2Cl4]2CHCl3 or (C19H21N2)2[Cu9(C5H7N2)8Cl6(OH)6]2CHCl3, where pz* is the 3,5-dimethylpyrazolyl anion, C5H7N2 , and HIXy is the 1,3- bis(2,6-dimethylphenyl)imidazolium cation, C19H21N2 +, is generated by a crystallographic centre of symmetry with a square-planar CuII ion bound to four 3-OH ions lying on the inversion centre. Of the four remaining unique CuII atoms, three adopt CuN2O2Cl square-pyramidal coordination geometries with the chloride ion in the apical position and one has a distorted CuN2OCl tetrahedral geometry. The dianionic nonanuclear core can be described as a 24-membered [CuNN]8 ring that contains a Cu9O6Cl6 core. The cluster features three intramolecular O—H Cl hydrogen bonds. In the crystal, weak C— H N and C—H Cl interactions link the components. Polynuclear paramagnetic clusters of this type are of considerable interest due to their relevance to both the bioinorganic and single-molecule magnets research fields

    Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Get PDF
    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances

    Third-order 2N-storage Runge-Kutta schemes with error control

    Get PDF
    A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two storage locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations

    Fourth-order 2N-storage Runge-Kutta schemes

    Get PDF
    A family of five-stage fourth-order Runge-Kutta schemes is derived; these schemes required only two storage locations. A particular scheme is identified that has desirable efficiency characteristics for hyperbolic and parabolic initial (boundary) value problems. This scheme is competitive with the classical fourth-order method (high-storage) and is considerably more efficient and accurate than existing third-order low-storage schemes
    • …
    corecore