8 research outputs found

    Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma

    No full text
    <div><p>A small molecule which specifically blocks the interaction of Rictor and mTOR was identified utilizing a high-throughput yeast two-hybrid screen and evaluated as a potential inhibitor of mTORC2 activity in glioblastoma multiforme (GBM). <i>In vitro</i>, CID613034 inhibited mTORC2 kinase activity at submicromolar concentrations and in cellular assays specifically inhibited phosphorylation of mTORC2 substrates, including AKT (Ser-473), NDRG1 (Thr-346) and PKC<b>α</b> (Ser-657), while having no appreciable effects on the phosphorylation status of the mTORC1 substrate S6K (Thr-389) or mTORC1-dependent negative feedback loops. CID613034 demonstrated significant inhibitory effects on cell growth, motility and invasiveness in GBM cell lines and sensitivity correlated with relative Rictor or SIN1 expression. Structure-activity relationship analyses afforded an inhibitor, JR-AB2-011, with improved anti-GBM properties and blocked mTORC2 signaling and Rictor association with mTOR at lower effective concentrations. In GBM xenograft studies, JR-AB2-011 demonstrated significant anti-tumor properties. These data support mTORC2 as a viable therapeutic target in GBM and suggest that targeting protein-protein interactions critical for mTORC2 function is an effective strategy to achieve therapeutic responses.</p></div
    corecore