4,748 research outputs found

    Phenomenology of flavorful composite vector bosons in light of BB anomalies

    Full text link
    We analyze the flavor structure of composite vector bosons arising in a model of vectorlike technicolor, often called hypercolor (HC), with eight flavors that form a one-family content of HC fermions. Dynamics of the composite vector bosons, referred to as HC rho in this paper, are formulated together with HC pions by the hidden local symmetry (HLS), in a way analogous to QCD vector mesons. Then coupling properties to the standard model (SM) fermions, which respect the HLS gauge symmetry, are described in a way that couplings of the HC rhos to the left-handed SM quarks and leptons are given by a well-defined setup as taking the flavor mixing structures into account. Under the present scenario, we discuss significant bounds on the model from electroweak precision tests, flavor physics, and collider physics. We also try to address B anomalies in processes such as B -> K(*) mu+ mu- and B -> D(*) tau nu, recently reported by LHCb, Belle, (ATLAS, and CMS in part.) Then we find that the present model can account for the anomaly in B -> K(*) mu+ mu- consistently with the other constraints while it predicts no significant deviations in B -> D(*) tau nu from the SM, which can be examined in the future Belle II experiment. The former is archived with the form C9 = -C10 of the Wilson coefficients for effective operators of b -> s mu+ mu-, which has been favored by the recent experimental data. We also investigate current and future experimental limits at the Large Hadron Collider (LHC) and see that possible collider signals come from dijet and ditau, or dimuon resonant searches for the present scenario with TeV mass range. To conclude, the present b -> s mu+ mu- anomaly is likely to imply discovery of new vector bosons in the ditau or dimuon channel in the context of the HC rho model. Our model can be considered as a UV completion of conventional U(1)' model.Comment: 62 pages, 8 figures, 3 tables, typos modified, published versio

    Anisotropic Dielectric Breakdown Strength of Single Crystal Hexagonal Boron Nitride

    Full text link
    Dielectric breakdown has historically been of great interest from the perspectives of fundamental physics and electrical reliability. However, to date, the anisotropy in the dielectric breakdown has not been discussed. Here, we report an anisotropic dielectric breakdown strength (EBD) for h-BN, which is used as an ideal substrate for two-dimensional (2D) material devices. Under a well-controlled relative humidity, EBD values in the directions both normal and parallel to the c axis (EBD+c & EBD//c) were measured to be 3 and 12 MV/cm, respectively. When the crystal structure is changed from sp3 of cubic-BN (c-BN) to sp2 of h-BN, EBD+c for h-BN becomes smaller than that for c-BN, while EBD//c for h-BN drastically increases. Therefore, h-BN can possess a relatively high EBD concentrated only in the direction parallel to the c axis by conceding a weak bonding direction in the highly anisotropic crystal structure. This explains why the EBD//c for h-BN is higher than that for diamond. Moreover, the presented EBD value obtained from the high quality bulk h-BN crystal can be regarded as the standard for qualifying the crystallinity of h-BN layers grown via chemical vapor deposition for future electronic applications

    Microscopic Study of Nuclear "Pasta" by Quantum Molecular Dynamics

    Get PDF
    Structure of cold dense stellar matter at subnuclear densities is investigated with quantum molecular dynamics (QMD). We succeeded in showing that the phases with slab-like and rod-like nuclei etc. can be formed dynamically without any assumptions on the nuclear shape. Our result suggests the existence of these kinds of phases in neutron star crusts.Comment: to appear in Proceedings of YKIS01 "Physics of Unstable Nuclei", Kyoto, December, 2001 (supplement volume of Prog. Theor. Phys.
    corecore