33 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Drug Repositioning of Proton Pump Inhibitors for Enhanced Efficacy and Safety of Cancer Chemotherapy

    No full text
    Proton pump inhibitors (PPIs), H+/K+-ATPase inhibitors, are the most commonly prescribed drugs for the treatment of gastroesophageal reflux and peptic ulcer diseases; they are highly safe and tolerable. Since PPIs are frequently used in cancer patients, studies investigating interactions between PPIs and anticancer agents are of particular importance to achieving effective and safe cancer chemotherapy. Several studies have revealed that PPIs inhibit not only the H+/K+-ATPase in gastric parietal cells, but also the vacuolar H+-ATPase (V-ATPase) overexpressed in tumor cells, as well as the renal basolateral organic cation transporter 2 (OCT2) associated with pharmacokinetics and/or renal accumulation of various drugs, including anticancer agents. In this mini-review, we summarize the current knowledge regarding the impact of PPIs on the efficacy and safety of cancer chemotherapeutics via inhibition of targets other than the H+/K+-ATPase. Co-administration of clinical doses of PPIs protected kidney function in patients receiving cisplatin and fluorouracil, presumably by decreasing accumulation of cisplatin in the kidney via OCT2 inhibition. In addition, co-administration or pretreatment with PPIs could inhibit H+ transport via the V-ATPase in tumor cells, resulting in lower extracellular acidification and intracellular acidic vesicles to enhance the sensitivity of the tumor cells to the anticancer agents. In the present mini-review, we suggest that PPIs enhance the efficacy and safety of anticancer agents via off-target inhibition (e.g., of OCT2 and V-ATPase), rather than on-target inhibition of the H+/K+-ATPase. The present findings should provide important information to establish novel supportive therapy with PPIs during cancer chemotherapy

    Impact of the number of repeated inhalations and patient characteristics on the residual amount of inhaled laninamivir octanoate hydrate dry powder in pediatric patients with influenza

    No full text
    Abstract Background A dry powder inhaled formulation is used for the anti-influenza drug laninamivir octanoate hydrate (laninamivir). Although two successive inhalations (puffs) are recommended to minimize residual amounts of active ingredients, previous reports suggest that pediatric patients with low peak inspiratory flow are unable to inhale the active ingredient adequately. In the present study, we prospectively investigated the appropriate number of repeated inhalations of laninamivir dry powder and factors influencing the residual amount of ingredients in pediatric patients with influenza. Methods The study enrolled 64 patients receiving laninamivir dry powder inhaler (Inavir®) between January and March 2016 at Tsu emergency medical center/pediatric clinic and dental clinic. All patients enrolled used a laninamivir dry powder inhaler in four repeated inhalations, as instructed by a pharmacist. The residual amount of laninamivir dry powder was calculated by measuring the device weight before and after each inhalation and a residual amount of >20% was defined as an unsuccessful inhalation. Results The inadequate inhalation rate after two successive inhalations was 45%, and it decreased as number of inhalation repeats increased, reaching 23% after four successive inhalations. Peak inspiratory flow in patients with inadequate inhalation was significantly lower than that in patients with adequate inhalation, for all numbers of inhalation repeats analyzed. Receiver operating characteristic analyses indicated peak inspiratory flow cut-off values of 140, 120, 100, and 100 L/min at 1-4 successive inhalations, respectively. Conclusions The present findings suggest that a proportion of patients with low peak inspiratory flow were unable to inhale the active ingredient adequately when laninamivir dry powder inhaler was administered as two successive inhalations, as recommended in the instruction manual. Three or four repeated inhalations of laninamivir dry powder inhaler should be administered to pediatric patients with low peak inspiratory flow

    Risk factors for the development of hypermagnesemia in patients prescribed magnesium oxide: a retrospective cohort study

    No full text
    Abstract Background Magnesium oxide (MgO), an antacid and laxative, is widely used in Japan to treat constipation and peptic ulcers. Because serum Magnesium (Mg) levels are elevated in elderly and/or patients with renal failure, its periodic monitoring is recommended for patients prescribed MgO, in order to prevent MgO-induced hypermagnesemia. However, there is little information regarding the factors contributing to the development of MgO-induced hypermagnesemia. In the present study, we retrospectively investigated the risk factors of hypermagnesemia in patients prescribed MgO. Methods Data of 3258 patients hospitalized in Mie University Hospital between October 2015 and September 2017, who were prescribed MgO tablets, were extracted from the electronic medical records. According to the inclusion and exclusion criteria, 320 of the 3258 patients were enrolled in this study. Hypermagnesemia was defined as serum Mg levels ≥2.5 mg/dL (by the Common Terminology Criteria for Adverse Events version 4.0). Uni- and multivariate analyses were performed to identify risk factors for the development of hypermagnesemia in patients prescribed MgO using the following variables: age, estimated glomerular filtration rate, blood urea nitrogen levels, MgO dose, duration of MgO administration, and co-administrated proton pump inhibitors, H2 blocker (famotidine), vitamin D3 drugs, and diuretics. Results Seventy-five patients out of 320 (23%) developed grade 1 and grade 3 hypermagnesemia, with the occurrence of grade 1 and grade 3 in 62 (19%) and 13 (4%) patients, respectively. Multivariate logistic regression analyses indicated 4 independent risk factors for hypermagnesemia comprising estimated glomerular filtration rate ≤ 55.4 mL/min (odds ratio (OR): 3.105, P = 0.001), blood urea nitrogen ≥22.4 mg/dL (OR: 3.490, P < 0.001), MgO dose ≥1650 mg/day (OR: 1.914, P = 0.039), and duration of MgO administration ≥36 days (OR: 2.198, P = 0.012). The occurrence rate of hypermagnesemia was elevated in accordance with these risk factors. Conclusions These results suggest that a periodic monitoring of serum Mg levels is strongly recommended in MgO prescribed patients, especially in those with multiple risk factors for hypermagnesemia. The present findings provide useful information for the safe management of MgO therapy

    An Integrated In Silico and In Vivo Approach to Identify Protective Effects of Palonosetron in Cisplatin-Induced Nephrotoxicity

    No full text
    Cisplatin is widely used to treat various types of cancers, but it is often limited by nephrotoxicity. Here, we employed an integrated in silico and in vivo approach to identify potential treatments for cisplatin-induced nephrotoxicity (CIN). Using publicly available mouse kidney and human kidney organoid transcriptome datasets, we first identified a 208-gene expression signature for CIN and then used the bioinformatics database Cmap and Lincs Unified Environment (CLUE) to identify drugs expected to counter the expression signature for CIN. We also searched the adverse event database, Food and Drug Administration. Adverse Event Reporting System (FAERS), to identify drugs that reduce the reporting odds ratio of developing cisplatin-induced acute kidney injury. Palonosetron, a serotonin type 3 receptor (5-hydroxytryptamine receptor 3 (5-HT3R)) antagonist, was identified by both CLUE and FAERS analyses. Notably, clinical data from 103 patients treated with cisplatin for head and neck cancer revealed that palonosetron was superior to ramosetron in suppressing cisplatin-induced increases in serum creatinine and blood urea nitrogen levels. Moreover, palonosetron significantly increased the survival rate of zebrafish exposed to cisplatin but not to other 5-HT3R antagonists. These results not only suggest that palonosetron can suppress CIN but also support the use of in silico and in vivo approaches in drug repositioning studies
    corecore