231 research outputs found

    Applications of a novel biodetection system to saliva using protein fingerprints with data processing

    Get PDF
    A fundamental method has been developed focusing on a facile and rapid examination of periodontal disease. Periodontal disease is an oral disease thought to affect 80% of adults, and early detection with treatment is desirable for the improvement of the quality of life. Unfortunately conventional methods are not consistent as the disease is caused by a number of bacteria and detection relies on the skills of the dentist. Thus an objective detection system is required. We have performed an experiment on saliva using a novel biodetection system, designated PepTenChip®. A disease model for saliva was prepared using a specimen from a healthy subject and a mixture of hemoglobin (f-Hb) and lactate dehydrogenase (LDH), which is used as a periodontal disease marker protein with healthy saliva. PepTenChip® is a peptide microarray in which fluorescent labelled structured peptides are immobilized on a novel amorphous carbon substrate. Since the peptides used as capture molecules are fluorescently labelled, labeling of analytes is not necessary. The fluorescence intensity change before and after application of analytes are detected rather than the ON/OFF detection common to conventional microarrays using a set of antigen-antibody. The fluorescence intensity value changes according to the concentration of captured protein allowing the generation of protein fingerprint (PFP) and dendrograms. The present method does not rely on a "one to one" interaction, unlike conventional biodetection, and advantages can be envisaged in the case of an undefined or unknown cause of disease. The statistical analyses, such as multivariate analyses, allow classification of the type of proteins added in saliva as mimetics of disease. PepTenChip® system is useful and convenient for examination of periodontal disease in health care

    電波照射装置の開発とミネラリゼーションにおける電波影響解析

    Get PDF
    生体への影響解析のための電波照射装置の開発と開発研究におけるアウトリーチ活

    Bioavailability of intravenous fosphenytoin sodium in healthy Japanese volunteers

    Get PDF
    To compare and evaluate the bioavailability for intravenous fosphenytoin sodium with that of intravenous phenytoin sodium in Japanese subjects. In study 1, healthy Japanese male volunteers received a 30-min infusion of 375 mg fosphenytoin sodium or an equimolar dose of 250 mg phenytoin by a double-blind, crossover method. In study 2, other healthy Japanese male volunteers received a 30-min or 10-min infusion of 563 mg fosphenytoin sodium, followed by a dose of 750 mg after 2 weeks in an unblinded manner. Comparing with 250 mg phenytoin sodium, 375 mg fosphenytoin sodium exhibited lower total plasma phenytoin C(max), whereas the geometric mean ratio of the AUC of total and free phenyotoin for fosphenytoin sodium at a dose of 375 mg was very similar to phenytoin sodium at a equimolar dose of 250 mg (AUC(0–t) ratio: 0.98 and 1.02, respectively). Therefore, fosphenytoin is almost completely converted to phenytoin in subjects. Fosphenytoin sodium was rapidly converted to phenytoin at doses of 375, 563, and 750 mg. The maximum concentration (C(max)) of total plasma phenytoin increased in a dose-dependent manner. The area under the plasma concentration–time curve (AUC) increased slightly more than proportionally with the administered dose, and clearance (CL) decreased with increasing dose. Pain and other infusion-site reactions were reported by all 12 subjects with phenytoin sodium, whereas very few symptoms were observed with fosphenytoin sodium. In conclusion, fosphenytoin sodium is considered to be a useful substitute for phenytoin sodium with almost no associated injection-site reactions

    Cortical Regions Encoding Hardness Perception Modulated by Visual Information Identified by Functional Magnetic Resonance Imaging With Multivoxel Pattern Analysis

    Get PDF
    Recent studies have revealed that hardness perception is determined by visual information along with the haptic input. This study investigated the cortical regions involved in hardness perception modulated by visual information using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). Twenty-two healthy participants were enrolled. They were required to place their left and right hands at the front and back, respectively, of a mirror attached to a platform placed above them while lying in a magnetic resonance scanner. In conditions SFT, MED, and HRD, one of three polyurethane foam pads of varying hardness (soft, medium, and hard, respectively) was presented to the left hand in a given trial, while only the medium pad was presented to the right hand in all trials. MED was defined as the control condition, because the visual and haptic information was congruent. During the scan, the participants were required to push the pad with the both hands while observing the reflection of the left hand and estimate the hardness of the pad perceived by the right (hidden) hand based on magnitude estimation. Behavioral results showed that the perceived hardness was significantly biased toward softer or harder in >73% of the trials in conditions SFT and HRD; we designated these trials as visually modulated (SFTvm and HRDvm, respectively). The accuracy map was calculated individually for each of the pair-wise comparisons of (SFTvm vs. MED), (HRDvm vs. MED), and (SFTvm vs. HRDvm) by a searchlight MVPA, and the cortical regions encoding the perceived hardness with visual modulation were identified by conjunction of the three accuracy maps in group analysis. The cluster was observed in the right sensory motor cortex, left anterior intraparietal sulcus (aIPS), bilateral parietal operculum (PO), and occipito-temporal cortex (OTC). Together with previous findings on such cortical regions, we conclude that the visual information of finger movements processed in the OTC may be integrated with haptic input in the left aIPS, and the subjective hardness perceived by the right hand with visual modulation may be processed in the cortical network between the left PO and aIPS

    Growth of the Cellular Slime Mold, Dictyostelium discoideum

    Full text link

    開発研究におけるアウトリーチ活動

    Get PDF
    生体への影響解析のための電波照射装置の開発と開発研究におけるアウトリーチ活

    緒言

    Get PDF
    生体への影響解析のための電波照射装置の開発と開発研究におけるアウトリーチ活

    結言

    Get PDF
    生体への影響解析のための電波照射装置の開発と開発研究におけるアウトリーチ活
    corecore