722 research outputs found

    Finite-Width Bundle is Most Stable in a Solution with Salt

    Full text link
    We applied the mean-field approach to a columnar bundle assembled by the parallel arrangement of stiff polyelectrolyte rods in a salt bath. The electrostatic potential can be divided into two regions: inside the bundle for condensed counter-ions, and outside the bundle for free small ions. To determine the distribution of condensed counter-ions inside the bundle, we use a local self-consistent condition that depends on the charge density, the electrostatic potential, and the net polarization. The results showed that, upon bundle formation, the electric charge of polyelectrolytes, even those inside the bundle, tend to survive in an inhomogeneous manner, and thus their width remains finite under thermal equilibrium because of the long-range effect of charge instability.Comment: 7 pages, 4 figure

    How are small ions involved in the compaction of DNA molecules?

    Get PDF
    DNA is a genetic material found in all life on Earth. DNA is composed of four types of nucleotide subunits, and forms a double-helical one-dimensional polyelectrolyte chain. If we focus on the microscopic molecular structure, DNA is a rigid rod-like molecule. On the other hand, with coarse graining, a long-chain DNA exhibits fluctuating behavior over the whole molecule due to thermal fluctuation. Owe to its semiflexible nature, individual giant DNA molecule undergoes a large discrete transition in the higher-order structure. In this folding transition into a compact state, small ions in the solution have a critical effect, since DNA is highly charged. In the present article, we interpret the characteristic features of DNA compaction while paying special attention to the role of small ions, in relation to a variety of single-chain morphologies generated as a result of compaction

    Quasi-Stationary States in Ionic Liquid-Liquid Crystal Mixtures at the Nematic-Isotropic Phase Transition

    Get PDF
    An open system is a system driven away from equilibrium by a source that supplies an inflow of energy and a sink to maintain an outflow. A typical example of an open system is a system close to its phase transition temperature under irradiation by a laser. This provides a steady flow of energy through a photon flux. The sink in that case is the environment to which energy is lost in the form of heat dissipation. Creation of such a thermodynamically open state suggests that we can expect generation of exotic spatio-temporal structures length-scale independent correlation maintained under the global dissipative forces provided by the surroundings. Internal long-range forces can bring in additional spatio-temporal correlations, giving rise to states with a very long lifetime, the ``quasistationary states'' (QSS). In this communication, we report evolution of quasistationary states, in a mixture of the well-known liquid crystal (N-(4-methoxybenzylidene)-4-butylaniline, MBBA) and an iron-based room temperature ionic liquid (RTIL), namely, 1-ethyl-3-methylimidazolium tetrachloroferrate (EMIF) at the Nematic-Isotropic phase transition, when focused radiation with 532 nm wavelength from a Nd:YAG laser (200-300 mW optical power) is incident on the sample. We explain the QSS by invoking a sharp negative thermal gradient due to the laser photon flux and dipolar interactions. In our model, the dipoles are the charge transfer complexes (CTCs) formed in the RTIL by resonant laser pumping, which create an orientational ordering and balance the fluctuating force of the thermal gradient to create the QSS. In the absence of such CTCs in a mixture of MBBA and a Gallium-based RTIL (1-ethyl-3-methylimidazolium tetrachlorogallate, EMIG), the QSS was not observed

    Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates

    Full text link
    We theoretically study the Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates using the Gross-Pitaevskii and Bogoliubov-de Gennes models. A flat interface between the two condensates is shown to deform into sawtooth or Stokes-like waves, leading to the formation of singly quantized vortices on the peaks and troughs of the waves. This scenario of interface instability in quantum fluids is quite different from that in classical fluids.Comment: 5 pages, 4 figure

    Trochanteric Claw Plate Fixation for Greater Trochanteric Fracture or Osteotomy in Total Hip Arthroplasty

    Get PDF
    This study retrospectively evaluated 41 consecutive open reductions and internal fixations following primary or revision total hip arthroplasty, which required trochanteric claw plate fixation for greater trochanteric fracture or osteotomy between January 2008 and December 2020. The mean duration of clinical follow-up was 4.2 years (range, 1-13 years). The patients included 13 men and 28 women, with a mean age of 68 years (range, 32-87 years). The indications for intervention included trochanteric osteotomy, intraoperative fracture, and non-union including postoperative fracture in 6, 9, and 26 cases, respectively. The mean Merle d’Aubigné Clinical Score improved from 9.4 points (range, 5-15 points) pre-operatively, to 14.3 points (range, 9-18 points) at the last follow-up. Bone union occurred in 35 cases (85%), while implant breakage occurred in four cases. At the last follow-up, the mean Merle d’Aubigné Clinical Scores of bone union and non-union were 15.3 and 14.1, respectively (p=0.48). The Kaplan-Meier survival rate, with the endpoint being revision surgery for pain, non-union, dislocation, or implant breakage, at 10 years was 80.0% (95% confidence interval: 62.6-97.4%). Greater trochanteric fixation using a trochanteric claw plate yielded successful results

    Token Economy–Based Hospital Bed Allocation to Mitigate Information Asymmetry: Proof-of-Concept Study Through Simulation Implementation

    Get PDF
    [Background:] Hospital bed management is an important resource allocation task in hospital management, but currently, it is a challenging task. However, acquiring an optimal solution is also difficult because intraorganizational information asymmetry exists. Signaling, as defined in the fields of economics, can be used to mitigate this problem. [Objective:] We aimed to develop an assignment process that is based on a token economy as signaling intermediary. [Methods:] We implemented a game-like simulation, representing token economy–based bed assignments, in which 3 players act as ward managers of 3 inpatient wards (1 each). As a preliminary evaluation, we recruited 9 nurse managers to play and then participate in a survey about qualitative perceptions for current and proposed methods (7-point Likert scale). We also asked them about preferred rewards for collected tokens. In addition, we quantitatively recorded participant pricing behavior. [Results:] Participants scored the token economy–method positively in staff satisfaction (3.89 points vs 2.67 points) and patient safety (4.38 points vs 3.50 points) compared to the current method, but they scored the proposed method negatively for managerial rivalry, staff employee development, and benefit for patients. The majority of participants (7 out of 9) listed human resources as the preferred reward for tokens. There were slight associations between workload information and pricing. [Conclusions:] Survey results indicate that the proposed method can improve staff satisfaction and patient safety by increasing the decision-making autonomy of staff but may also increase managerial rivalry, as expected from existing criticism for decentralized decision-making. Participant behavior indicated that token-based pricing can act as a signaling intermediary. Given responses related to rewards, a token system that is designed to incorporate human resource allocation is a promising method. Based on aforementioned discussion, we concluded that a token economy–based bed allocation system has the potential to be an optimal method by mitigating information asymmetry
    corecore