13 research outputs found

    Metabolic fate of newly developed nondigestible oligosaccharide, maltobionic acid, in rats and humans

    No full text
    Abstract Maltobionic acid (MA), formed by a gluconic acid and glucose linked by an α‐1,4 bond, may have the properties of a nondigestible oligosaccharide. The objective of this study was to elucidate the bioavailability of MA in rats and humans by observing digestion of MA by small intestinal enzymes, the fermentation of MA by gut microbiota, and the effect of adaptation following prolonged ingestion of MA. MA digestion was assessed using brush border membrane vesicles (BBMV) from rat small intestine. A within‐subject repeated measures design was used for ingestion experiments in 10 healthy female participants. After MA ingestion, postprandial plasma glucose and insulin levels, breath hydrogen excretion, and urinary MA were measured. The effect of adaptation following prolonged MA ingestion was investigated in rats. MA was minimally hydrolyzed by BBMV. Ingestion of 10 g of MA by healthy females did not elevate postprandial plasma glucose and insulin levels. Breath hydrogen and urinary MA were negligibly excreted over 8 hr following ingestion. Adaptation to prolonged MA ingestion produced no significant difference in exhaled hydrogen levels over 8 hr following administration compared with controls. MA is a new food material that is highly resistant to digestion and fermentation. It expresses the characteristics of a nondigestible oligosaccharide, including being low energy, improving the flavor of food and juice, and mineral solubilization

    An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation

    No full text
    Abstract Over the last 3 decades, a large portion of coral cover has been lost around the globe. This significant decline necessitates a rapid assessment of coral reef health to enable more effective management. In this paper, we propose an efficient method for coral cover estimation and demonstrate its viability. A large-scale 3-D structure model, with resolutions in the x, y and z planes of 0.01 m, was successfully generated by means of a towed optical camera array system (Speedy Sea Scanner). The survey efficiency attained was 12,146 m2/h. In addition, we propose a segmentation method utilizing U-Net architecture and estimate coral coverage using a large-scale 2-D image. The U-Net-based segmentation method has shown higher accuracy than pixelwise CNN modeling. Moreover, the computational cost of a U-Net-based method is much lower than that of a pixelwise CNN-based one. We believe that an array of these survey tools can contribute to the rapid assessment of coral reefs
    corecore