77 research outputs found

    Pattern of access to cafeteria-style diet determines fat mass and degree of spatial memory impairments in rats.

    Full text link
    Repeated 'cycling' between healthy and unhealthy eating is increasingly common but the effects of such cycling on cognitive function are unknown. Here we tested the effects of cycling between chow and a cafeteria diet (CAF) rich in saturated fat and refined carbohydrates on fat mass and place recognition memory in rats. Rats fed the chow diet (control group) were compared with groups fed CAF for either: 3 consecutive days per week followed by 4 days of chow, (3CAF:4CHOW group); 5 consecutive days per week followed by 2 days of chow (5CAF:2CHOW group); or 7 days per week (7CAF group). Total days of exposure to CAF were matched between the latter groups by staggering the introduction of CAF diet. After 16-18 days of CAF, spatial recognition memory was significantly worse in the 7CAF group relative to controls. After 23-25 days of CAF, both the 7CAF and 5CAF:2CHOW groups, but not the 3CAF:4CHOW group, were impaired relative to controls, mirroring changes in fat mass measured by EchoMRI. CAF feeding did not affect object recognition memory or total exploration time. These results indicate that even when matching total exposure, the pattern of access to unhealthy diets impairs spatial memory in a graded fashion

    Contexts Paired with Junk Food Impair Goal-Directed Behavior in Rats: Implications for Decision Making in Obesogenic Environments.

    Full text link
    The high prevalence of obesity and related metabolic diseases calls for greater understanding of the factors that drive excess energy intake. Calorie-dense palatable foods are readily available and often are paired with highly salient environmental cues. These cues can trigger food-seeking and consumption in the absence of hunger. Here we examined the effects of palatable food-paired environmental cues on control of instrumental food-seeking behavior. In Experiment 1, adult male rats received exposures to one context containing three "junk" foods (JFs context) and another containing chow (Chow context). Next, rats were food-deprived and trained to perform instrumental responses (lever-press) for two novel food rewards in a third, distinct context. Contextual influences on flexible control of food-seeking behavior were then assessed by outcome devaluation tests held in the JF, chow and training contexts. Devaluation was achieved using specific satiety and test order was counterbalanced. Rats exhibited goal-directed control over behavior when tested in the training and chow-paired contexts. Notably, performance was habitual (insensitive to devaluation) when tested in the JF context. In Experiment 2 we tested whether the impairment found in the JF context could be ameliorated by the presentation of a discrete auditory cue paired with the chow context, relative to a second cue paired with the JF context. Consistent with the results of Experiment 1, the devaluation effect was not significant when rats were tested in the JF context with the JF cue. However, presenting the chow cue increased the impact of the devaluation treatment leading to a robust devaluation effect. Further tests confirmed that performance in the chow context was goal-directed and that sensory-specific satiety in the JF context was intact. These results show that environments paired with palatable foods can impair goal-directed control over food-seeking behavior, but that this deficit was improved by a cue paired with chow. This has promising implications for assisting individuals in controlling their eating behavior in environments designed to dysregulate it

    Comparable metabolic effects of isocaloric sucrose and glucose solutions in rats.

    Full text link
    Much of the global increase in sugar intake is attributable to rising consumption of sugar-sweetened beverages (SSBs). Because people compensate poorly for liquid calories, SSB consumption increases total energy intake, raising the risk of harmful metabolic effects in addition to possible effects of sugars per se. Glucose and fructose, the constituent sugars in sucrose, can exert distinct effects on metabolism and also differ in their satiating properties, suggesting that compensation for the calories in these sugars may also vary. In light of claims that the fructose within sucrose is particularly harmful, the present study compared the effects of giving rats access to either a sucrose or an isoenergetic glucose solution. Adult male rats were fed standard chow and water supplemented with 95 ml of 10% glucose (Glucose group; n = 10), 9% sucrose solution (Sucrose group; n = 10) or water only (Control group; n = 10) daily for 7 weeks. Sugar-fed groups had higher total energy intakes than the Control group, but the extent of this incomplete compensation did not vary between Sucrose and Glucose groups. In a short-term compensation test, sugar groups were less sensitive to the effects of a sweet pre-meal, with no differences between the Glucose and Sucrose groups. Relative to water, both sugars reduced insulin sensitivity after 4 weeks on the diets and elevated fat mass at 7 weeks. Results suggest that sucrose and glucose induce comparable metabolic impairments and alter the homeostatic regulation of food intake even under conditions where daily access is capped

    Male Rat Offspring Are More Impacted by Maternal Obesity Induced by Cafeteria Diet than Females-Additive Effect of Postweaning Diet.

    Full text link
    Maternal obesity increases the risk of health complications in offspring, but whether these effects are exacerbated by offspring exposure to unhealthy diets warrants further investigation. Female Sprague-Dawley rats were fed either standard chow (n = 15) or 'cafeteria' (Caf, n = 21) diets across pre-pregnancy, gestation, and lactation. Male and female offspring were weaned onto chow or Caf diet (2-3/sex/litter), forming four groups; behavioural and metabolic parameters were assessed. At weaning, offspring from Caf dams were smaller and lighter, but had more retroperitoneal (RP) fat, with a larger effect in males. Maternal Caf diet significantly increased relative expression of ACACA and Fasn in male and female weanling liver, but not CPT-1, SREBP and PGC1; PPARα was increased in males from Caf dams. Maternal obesity enhanced the impact of postweaning Caf exposure on adult body weight, RP fat, liver mass, and plasma leptin in males but not females. Offspring from Caf dams appeared to exhibit reduced anxiety-like behaviour on the elevated plus maze. Hepatic CPT-1 expression was reduced only in adult males from Caf fed dams. Post weaning Caf diet consumption did not alter liver gene expression in the adult offspring. Maternal obesity exacerbated the obesogenic phenotype produced by postweaning Caf diet in male, but not female offspring. Thus, the impact of maternal obesity on adiposity and liver gene expression appeared more marked in males. Our data underline the sex-specific detrimental effects of maternal obesity on offspring

    Peripheral Neuropathy Phenotyping in Rat Models of Type 2 Diabetes Mellitus: Evaluating Uptake of the Neurodiab Guidelines and Identifying Future Directions

    Get PDF
    Diabetic peripheral neuropathy (DPN) affects over half of type 2 diabetes mellitus (T2DM) patients, with an urgent need for effective pharmacotherapies. While many rat and mouse models of T2DM exist, the phenotyping of DPN has been challenging with inconsistencies across laboratories. To better characterize DPN in rodents, a consensus guideline was published in 2014 to accelerate the translation of preclinical findings. Here we review DPN phenotyping in rat models of T2DM against the ‘Neurodiab’ criteria to identify uptake of the guidelines and discuss how DPN phenotypes differ between models and according to diabetes duration and sex. A search of PubMed, Scopus and Web of Science databases identified 125 studies, categorised as either diet and/or chemically induced models or transgenic/spontaneous models of T2DM. The use of diet and chemically induced T2DM models has exceeded that of transgenic models in recent years, and the introduction of the Neurodiab guidelines has not appreciably increased the number of studies assessing all key DPN endpoints. Combined high-fat diet and low dose streptozotocin rat models are the most frequently used and well characterised. Overall, we recommend adherence to Neurodiab guidelines for creating better animal models of DPN to accelerate translation and drug development

    Evidence of Altered Peripheral Nerve Function in a Rodent Model of Diet-Induced Prediabetes.

    Full text link
    Peripheral neuropathy (PN) is a debilitating complication of diabetes that affects >50% of patients. Recent evidence suggests that obesity and metabolic disease, which often precede diabetes diagnosis, may influence PN onset and severity. We examined this in a translationally relevant model of prediabetes induced by a cafeteria (CAF) diet in Sprague-Dawley rats (n = 15 CAF versus n = 15 control). Neuropathy phenotyping included nerve conduction, tactile sensitivity, intraepidermal nerve fiber density (IENFD) and nerve excitability testing, an in vivo measure of ion channel function and membrane potential. Metabolic phenotyping included body composition, blood glucose and lipids, plasma hormones and inflammatory cytokines. After 13 weeks diet, CAF-fed rats demonstrated prediabetes with significantly elevated fasting blood glucose, insulin and impaired glucose tolerance as well as obesity and dyslipidemia. Nerve conduction, tactile sensitivity and IENFD did not differ; however, superexcitability was significantly increased in CAF-fed rats. Mathematical modeling demonstrated this was consistent with a reduction in sodium-potassium pump current. Moreover, superexcitability correlated positively with insulin resistance and adiposity, and negatively with fasting high-density lipoprotein cholesterol. In conclusion, prediabetic rats over-consuming processed, palatable foods demonstrated altered nerve function that preceded overt PN. This work provides a relevant model for pathophysiological investigation of diabetic complications

    Peripheral Neuropathy Phenotyping in Rat Models of Type 2 Diabetes Mellitus: Evaluating Uptake of the Neurodiab Guidelines and Identifying Future Directions

    Full text link
    Diabetic peripheral neuropathy (DPN) affects over half of type 2 diabetes mellitus (T2DM) patients, with an urgent need for effective pharmacotherapies. While many rat and mouse models of T2DM exist, the phenotyping of DPN has been challenging with inconsistencies across laboratories. To better characterize DPN in rodents, a consensus guideline was published in 2014 to accelerate the translation of preclinical findings. Here we review DPN phenotyping in rat models of T2DM against the ‘Neurodiab’ criteria to identify uptake of the guidelines and discuss how DPN phenotypes differ between models and according to diabetes duration and sex. A search of PubMed, Scopus and Web of Science databases identified 125 studies, categorised as either diet and/or chemically induced models or transgenic/spontaneous models of T2DM. The use of diet and chemically induced T2DM models has exceeded that of transgenic models in recent years, and the introduction of the Neurodiab guidelines has not appreciably increased the number of studies assessing all key DPN endpoints. Combined high-fat diet and low dose streptozotocin rat models are the most frequently used and well characterised. Overall, we recommend adherence to Neurodiab guidelines for creating better animal models of DPN to accelerate translation and drug development.</jats:p

    Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion

    Get PDF
    Mephedrone (4-methylmethcathinone, MMC) is a popular recreational drug, yet its potential harms are yet to be fully established. The current study examined the impact of single or repeated MMC exposure on various neurochemical and behavioral measures in rats. In Experiment 1 male adolescent Wistar rats received single or repeated (once a day for 10 days) injections of MMC (30 mg/kg) or the comparator drug methamphetamine (METH, 2.5 mg/kg). Both MMC and METH caused robust hyperactivity in the 1 h following injection although this effect did not tend to sensitize with repeated treatment. Striatal dopamine (DA) levels were increased 1 h following either METH or MMC while striatal and hippocampal serotonin (5-HT) levels were decreased 1 h following MMC but not METH. MMC caused greater increases in 5-HT metabolism and greater reductions in DA metabolism in rats that had been previously exposed to MMC. Autoradiographic analysis showed no signs of neuroinflammation ([125I]CLINDE ligand used as a marker for translocator protein (TSPO) expression) with repeated exposure to either MMC or METH. In Experiment 2, rats received repeated MMC (7.5, 15 or 30 mg/kg once a day for 10 days) and were examined for residual behavioral effects following treatment. Repeated high (30 mg/kg) dose MMC produced impaired novel object recognition 5 weeks after drug treatment. However, no residual changes in 5-HT or DA tissue levels were observed at 7 weeks post-treatment. Overall these results show that MMC causes acute but not lasting changes in DA and 5-HT tissue concentrations. MMC can also cause long-term memory impairment. Future studies of cognitive function in MMC users are clearly warranted. © 2012 PLoS On

    The TNF-α antagonist etanerceptreverses age-related decreases in colonic SERT expression and faecal output in mice

    Get PDF
    Treatment for chronic constipation in older people is challenging and the condition has a major impact on quality of life. A lack of understanding about the causes of this condition has hampered the development of effective treatments. 5-HT is an important pro-kinetic agent in the colon. We examined whether alterations in colonic 5-HT signalling underlie age–related changes in faecal output in mice and whether these changes were due to an increase in TNF-α. Components of the 5-HT signalling system (5-HT, 5-HIAA, SERT) and TNF-α expression were examined in the distal colon of 3, 12, 18 and 24- month old mice and faecal output and water content monitored under control conditions and following the administration of etanercept (TNF-α inhibitor; 1 mg Kg-1). Faecal output and water content were reduced in aged animals. Age increased mucosal 5-HT availability and TNF-α expression and decreased mucosal SERT expression and 5-HIAA. Etanercept treatment of old mice reversed these changes, suggesting that age-related changes in TNFα expression are an important regulator of mucosal 5-HT signalling and pellet output and water content in old mice. These data point to “anti-TNFα” drugs as potential treatments for age-related chronic constipation
    • 

    corecore