8,812 research outputs found

    Remote sensing of the Chesapeake Bay plume salinity via microwave radiometry

    Get PDF
    The NASA-Langley-developed L-Band microwave radiometer was used to remotely measure sea surface salinity during the Chesapeake Bay plume studies. Obtained measurements of microwave brightness temperatures of the sea surface were combined with measurements of sea surface temperature obtained with an infrared radiometer and inverted to produce corresponding values of sea surface salinity. Results from the plume measurements, which indicate the southward extent of the plume along the Virginia-North Carolina coast, are presented and discussed. Additional measurements obtained for the Delaware Bay Mouth flight, and the James River-Shelf flight, are also discussed

    Comparisons and Combinations of Reactor and Long-Baseline Neutrino Oscillation Measurements

    Full text link
    We investigate how the data from various future neutrino oscillation experiments will constrain the physics parameters for a three active neutrino mixing model. The investigations properly account for the degeneracies and ambiguities associated with the phenomenology as well as estimates of experimental measurement errors. Combinations of various reactor measurements with the expected J-PARC (T2K) and NuMI offaxis (Nova) data, both with and without the increased flux associated with proton driver upgrades, are considered. The studies show how combinations of reactor and offaxis data can resolve degeneracies (e.g. the theta23 degeneracy) and give more precise information on the oscillation parameters. A primary purpose of this investigation is to establish the parameter space regions where CP violation can be discovered and where the mass hierarchy can be determined. It is found that such measurements, even with the augmented flux from proton driver upgrades, demand sin^2 (2 theta13) be fairly large and in the range where it is measurable by reactor experiments.Comment: 25 pages, 13 figures, fixed typos; 25 pages, 13 figures, updated content, references; previous 22 pages, 12 figures, added references and fixed reference display proble

    Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Get PDF
    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km

    Measurement of electron density of a negative-glow plasma with an E-band Fabry-Perot interferometer

    Get PDF
    Electron density measurement of negative glow plasma with E-band Fabry-Perot interferometer using flat plate techniqu

    Development of UHF radiometer

    Get PDF
    A wideband multifrequency UHF radiometer was initially developed to operate in the 500 to 710 MHz frequency range for the remote measurement of ocean water salinity. However, radio-frequency interference required a reconfiguration to operate in the single-frequency radio astronomy band of 608 to 614 MHz. Details of the radiometer development and testing are described. Flight testing over variable terrain provided a performance comparison of the UHF radiometer with an L-band radiometer for remote sensing of geophysical parameters. Although theoretically more sensitive, the UHF radiometer was found to be less desirable in practice than the L-band radiometer

    Nutritional Consequences of Food Insecurity in a Rural New York State County

    Get PDF
    This study of women with children in a rural county of upstate New York examined the relationships of food insecurity and income with two nutritional consequences (adiposity and fruit and vegetables consumption), and assessed whether disordered eating patterns is a mediator for the effects of food insecurity and income on these nutritional consequences. Each of 193 respondents was interviewed twice in her home. Data were collected on household food stores, socioeconomic and demographic characteristics, methods of obtaining food, food program participation, household expenditures, food intake, the Radimer/Cornell hunger and food insecurity items, height, weight, frequency of fruit and vegetable consumption, and disordered eating patterns. Regression analysis was used to analyze the relationships of body mass index and an obesity classification with height, income, education, single parenthood, employment, food insecurity, disordered eating, and frequency of fruit and vegetable consumption. Regression analysis was also used to examine the relationships of disordered eating and frequency of fruit and vegetable consumption with the other variables. Lower income and unemployment were related to higher adiposity. The effects of income on adiposity were not mediated through disordered eating patterns or through fruit and vegetable consumption. Food insecurity was related to adiposity, and part of this effect of food insecurity was mediated through disordered eating. This mediating effect of disordered eating partially explained why those experiencing the least severe food insecurity were more likely to be overweight than those who were food secure, but those experiencing the most severe food insecurity were less likely to be overweight than those who were food secure. Food insecurity was related to lower fruit and vegetable consumption, but this did not translate into effects on adiposity.

    Weak measurement takes a simple form for cumulants

    Full text link
    A weak measurement on a system is made by coupling a pointer weakly to the system and then measuring the position of the pointer. If the initial wavefunction for the pointer is real, the mean displacement of the pointer is proportional to the so-called weak value of the observable being measured. This gives an intuitively direct way of understanding weak measurement. However, if the initial pointer wavefunction takes complex values, the relationship between pointer displacement and weak value is not quite so simple, as pointed out recently by R. Jozsa. This is even more striking in the case of sequential weak measurements. These are carried out by coupling several pointers at different stages of evolution of the system, and the relationship between the products of the measured pointer positions and the sequential weak values can become extremely complicated for an arbitrary initial pointer wavefunction. Surprisingly, all this complication vanishes when one calculates the cumulants of pointer positions. These are directly proportional to the cumulants of sequential weak values. This suggests that cumulants have a fundamental physical significance for weak measurement

    CAN-HK : An a priori crustal model for the Canadian Shield

    Get PDF
    ACKNOWLEDGMENTS The United Kingdom component of the Hudson Bay Lithospheric Experiment (HuBLE) was supported by the Natural Environment Research Council (NERC) Grant Number NE/F007337/1, with financial and logistical support from the Geological Survey of Canada (GSC), Canada-Nunavut Geoscience Office (CNGO), SEIS-UK (the seismic node of NERC), and the First Nations communities of Nunavut. J. Beauchesne and J. Kendall provided invaluable assistance in the field. I. D. B. was funded by the Leverhulme Trust and acknowledges support through Grant Number RPG-2013- 332. The authors thank three anonymous reviewers for their constructive comments.Peer reviewedPublisher PD

    Hidden Order in Crackling Noise during Peeling of an Adhesive Tape

    Full text link
    We address the long standing problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a mid range of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to sticks-slip dynamics.Comment: 5 pages, 10 figure
    corecore