282 research outputs found

    Darcy-Forchheimer Flow of Casson Nanofluid with Heat Source/Sink: A Three-Dimensional Study

    Get PDF
    In this chapter, three-dimensional Casson nanoliquid flow in two lateral directions past a porous space by Darcy-Forchheimer articulation is examined. The study includes the impact of uniform heat source/sink and convective boundary condition. The administering partial differential equations are shaped to utilizing comparability changes into a set of nonlinear normal differential conditions which are fathomed numerically. The self-comparative arrangements are gotten and contrasted and accessible information for uncommon cases. The conduct of parameters is displayed graphically and examined for velocity, temperature, and nanoparticle volume part. It is discovered that temperature and nanoparticle volume fraction rise for enhancement of Forchheimer and porosity parameters

    Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP

    Get PDF
    This article does not have an abstract

    In vitro Anthelmintic Activity of Different Extracts of Memecylon umbellatumBurm.

    Get PDF
    In the present study, the possible anthelminitic effects of different extracts (petroleumether, chloroform, and ethanol) and two isolated compounds β-stigmasterol (PI) andSitosterol (PII) from the leaves of Memecylon umbellatum on Indian earthwormsPheretima Posthuma was investigated by in vitro experiments. Various concentrations(25, 50, 100mg/ml) of all extracts were tested and results were expressed in terms oftime for paralysis and time for death of worms. From the activity results it was found thatthe ethanolic extract and pure compound PI having the equipotent activity with standarddrug albendazole. Form the observations made higher concentration of extract producedparalytic effect much earlier and the time to death was shorter for all worms

    Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury

    Get PDF
    Mitochondrial dysfunction involving electron transport components is implicated in the pathogenesis of several neurodegenerative disorders and is a critical event in excitotoxicity. Excitatory amino acid L-β-N-oxalylamino-L-alanine (L-BOAA), causes progressive corticospinal neurodegeneration in humans. In mice, L-BOAA triggers glutathione loss and protein thiol oxidation that disrupts mitochondrial complex I selectively in motor cortex and lumbosacral cord, the regions affected in humans. We examined the factors regulating postinjury recovery of complex I in CNS regions after a single dose of L-BOAA. The expression of thioltransferase (glutaredoxin), a protein disulfide oxidoreductase regulated through AP1 transcription factor was upregulated within 30 min of L-BOAA administration, providing the first evidence for functional regulation of thioltransferase during restoration of mitochondrial function. Regeneration of complex I activity in motor cortex was concurrent with increase in thioltransferase protein and activity, 1 hr after the excitotoxic insult. Pretreatment with α-lipoic acid, a thiol delivery agent that protects motor neurons from L-BOAA-mediated toxicity prevented the upregulation of thioltransferase and AP1 activation, presumably by maintaining thiol homeostasis. Downregulation of thioltransferase using antisense oligonucleotides prevented the recovery of complex I in motor cortex and exacerbated the mitochondrial dysfunction in lumbosacral cord, providing support for the critical role for thioltransferase in maintenance of mitochondrial function in the CNS

    Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal thermoneutrophilic order Desulfurococcales. DNA repeat-binding properties of the Hyperthermus butylicus protein Cbp2(Hb) were characterized and its three-dimensional structure was determined by NMR spectroscopy. The two repeats generate helix-turn-helix structures separated by a basic linker that is implicated in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2(Hb) through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2(Hb) and, by inference, other Cbp1 and Cbp2 proteins are closely related in structure to homeodomain proteins with linked helix-turn-helix (HTH) domains, in particular the paired domain Pax and Myb family proteins that are involved in eukaryal transcriptional regulation

    Light and electron microscopic studies on the Y organ of the freshwater crab Travancoriana schirnerae

    Get PDF
    AbstractThe fine structure of the premoult Y organ in the freshwater crab Travancoriana schirnerae revealed elliptical epithelial gland cells with large, eccentric, multinucleolated nuclei and ample cytoplasm. The cytoplasm showed numerous polymorphic mitochondria with tubular cristae, highly anastomosed tubules and vesicles of smooth endoplasmic reticulum (SER), rich free ribosomes, small amounts of cisternae of rough endoplasmic reticulum (RER), microtubules and was devoid of Golgi complexes. Mitochondria were of two types the more abundant micromitochondria with electron dense matrix and the less abundant macromitochondria with moderately dense matrix. The tubular SER was particularly concentrated towards the basal region of the cell, intermingled with mitochondria and dense patches of free ribosomes while the vesicular SER lie close to the lateral plasma membrane. Large vesicles with flocculent substances, a few electron dense granules and multivesicular bodies could also be noticed in the gland cell cytoplasm. Aggregations of microvesicles which appeared close to the lateral plasma membrane, in association with dilated SER cisternae and microtubules, possibly suggest the intercellular exchange of substances. The plasma membrane beneath the basal lamina was composed of invaginations and the apical surface possessed numerous microvilli which serve to increase the surface area for metabolic exchange. Towards the apical region, the lateral plasma membrane of adjacent cells was linked by tight junctions. The presence of extraordinarily abundant tubular SER, high proportion of mitochondria with tubular cristae and rich free ribosomes could well be elucidated in favour of steroid production by the gland cells

    Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    Get PDF
    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system. Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism is that it minimizes interference from potential transcriptional signals carried on spacers deriving from A-T-rich genetic elements and, occasionally, on DNA repeats. Supporting evidence is provided by microarray and northern blotting analyses, and publicly available whole-transcriptome data for S. solfataricus P2

    Down-regulation of glutaredoxin by estrogen receptor antagonist renders female mice susceptible to excitatory amino acid mediated complex I inhibition in CNS

    Get PDF
    β-N-oxalyl-amino-L-alanine, (L-BOAA), an excitatory amino acid, acts as an agonist of the AMPA subtype of glutamate receptors. It inhibits mitochondrial complex I in motor cortex and lumbosacral cord of male mice through oxidation of critical thiol groups, and glutaredoxin, a thiol disulfide oxido-reductase, helps maintain integrity of complex I. Since incidence of neurolathyrism is less common in women, we examined the mechanisms underlying the gender-related effects. Inhibition of complex I activity by L-BOAA was seen in male but not female mice. Pretreatment of female mice with estrogen receptor antagonist ICI 182,780 or tamoxifen sensitizes them to L-BOAA toxicity, indicating that the neuroprotection is mediated by estrogen receptors. L-BOAA triggers glutathione (GSH) loss in male mice but not in female mice, and only a small but significant increase in oxidized glutathione (GSSG) was seen in females. As a consequence, up-regulation of γ-glutamyl cysteinyl synthase (the rate-limiting enzyme in glutathione synthesis) was seen only in male mouse CNS but not in females. Both glutathione reductase and glutaredoxin that reduce oxidized glutathione and protein glutathione mixed disulfides, respectively, were constitutively expressed at higher levels in females. Furthermore, glutaredoxin activity in female mice was down-regulated by estrogen antagonist indicating its regulation by estrogen receptor. The higher constitutive expression of glutathione reductase and glutaredoxin could potentially confer neuroprotection to female mice
    corecore