5 research outputs found

    Neutral-Type One-Dimensional Mixed-Valence Halogen-Bridged Platinum Chain Complexes with Large Charge-Transfer Band Gaps

    No full text
    One-dimensional (1D) electronic systems have attracted significant attention for a long time because of their various physical properties. Among 1D electronic systems, 1D halogen-bridged mixed-valence transition-metal complexes (the so-called MX chains) have been thoroughly studied owing to designable structures and electronic states. Here, we report the syntheses, structures, and electronic properties of three kinds of novel neutral MX-chain complexes. The crystal structures consist of 1D chains of Pt–X repeating units with (1<i>R</i>,2<i>R</i>)-(−)-diaminocychlohexane and CN<sup>–</sup> in-plane ligands. Because of the absence of a counteranion, the neutral MX chains have short interchain distances, so that strong interchain electronic interaction is expected. Resonance Raman spectra and diffuse-reflectance UV–vis spectra indicate that their electronic states are mixed-valence states (charge-density-wave state: Pt<sup>2+</sup>···X–Pt<sup>4+</sup>–X···Pt<sup>2+</sup>···X–Pt<sup>4+</sup>–X···). In addition, the relationship between the intervalence charge-transfer (IVCT) band gap and the degree of distortion of the 1D chain shows that the neutral MX chains have a larger IVCT band gap than that of cationic MX-chain complexes. These results provide new insight into the physical and electronic properties of 1D chain compounds

    Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal–Organic Frameworks: Selective Alcohol Oxidation and Structure–Activity Relationship

    No full text
    We report the syntheses, structures, and oxidation catalytic activities of a single-atom-based vanadium oxide incorporated in two highly crystalline MOFs, Hf-MOF-808 and Zr-NU-1000. These vanadium catalysts were introduced by a postsynthetic metalation, and the resulting materials (Hf-MOF-808-V and Zr-NU-1000-V) were thoroughly characterized through a combination of analytic and spectroscopic techniques including single-crystal X-ray crystallography. Their catalytic properties were investigated using the oxidation of 4-methoxybenzyl alcohol under an oxygen atmosphere as a model reaction. Crystallographic and variable-temperature spectroscopic studies revealed that the incorporated vanadium in Hf-MOF-808-V changes position with heat, which led to improved catalytic activity

    Metal–Organic Framework with Structural Flexibility Responding Specifically to Acetylene and Its Adsorption Behavior

    No full text
    Flexible metal–organic frameworks (MOFs) are one kind of stimuli-responsive materials that exhibit reversible structural transformations in response to external stimuli. Exploring and understanding the stimuli response behavior of flexible MOFs is challenging, as it involves weak host–guest interaction. We report here the unique flexibility of MOF Zn(int)(Ad) (TIF-A1, Hint = isonicotinic acid, Had = adenine) induced by acetylene adsorption. TIF-A1 is rigid toward most gas molecules, while only C2H2 can induce the flexibility of TIF-A1. C2H2-loaded TIF-A1 is characterized by single-crystal X-ray diffraction and molecular modeling. It is revealed that the flexibility of TIF-A1 originates from the strong interaction between acetylene and the framework, which pushes the rotation of the int ligand and the expansion of the framework simultaneously. This work is helpful in deeply understanding the flexibility of MOFs and guides exploring new flexible MOFs in the future

    Metal–Organic Framework with Structural Flexibility Responding Specifically to Acetylene and Its Adsorption Behavior

    No full text
    Flexible metal–organic frameworks (MOFs) are one kind of stimuli-responsive materials that exhibit reversible structural transformations in response to external stimuli. Exploring and understanding the stimuli response behavior of flexible MOFs is challenging, as it involves weak host–guest interaction. We report here the unique flexibility of MOF Zn(int)(Ad) (TIF-A1, Hint = isonicotinic acid, Had = adenine) induced by acetylene adsorption. TIF-A1 is rigid toward most gas molecules, while only C2H2 can induce the flexibility of TIF-A1. C2H2-loaded TIF-A1 is characterized by single-crystal X-ray diffraction and molecular modeling. It is revealed that the flexibility of TIF-A1 originates from the strong interaction between acetylene and the framework, which pushes the rotation of the int ligand and the expansion of the framework simultaneously. This work is helpful in deeply understanding the flexibility of MOFs and guides exploring new flexible MOFs in the future

    MOF–Thermogel Composites for Differentiated and Sustained Dual Drug Delivery

    No full text
    In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal–organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF–thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF–thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF–thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF–thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy
    corecore