6 research outputs found

    Discovery of Potent and Centrally Active 6‑Substituted 5‑Fluoro-1,3-dihydro-oxazine β‑Secretase (BACE1) Inhibitors via Active Conformation Stabilization

    No full text
    β-Secretase (BACE1) has an essential role in the production of amyloid β peptides that accumulate in patients with Alzheimer’s disease (AD). Thus, inhibition of BACE1 is considered to be a disease-modifying approach for the treatment of AD. Our hit-to-lead efforts led to a cellular potent 1,3-dihydro-oxazine <b>6</b>, which however inhibited hERG and showed high P-gp efflux. The close analogue of 5-fluoro-oxazine <b>8</b> reduced P-gp efflux; further introduction of electron withdrawing groups at the 6-position improved potency and also mitigated P-gp efflux and hERG inhibition. Changing to a pyrazine followed by optimization of substituents on both the oxazine and the pyrazine culminated in <b>24</b> with robust Aβ reduction in vivo at low doses as well as reduced CYP2D6 inhibition. On the basis of the X-ray analysis and the QM calculation of given dihydro-oxazines, we reasoned that the substituents at the 6-position as well as the 5-fluorine on the oxazine would stabilize a bioactive conformation to increase potency

    Discovery of Potent and Centrally Active 6‑Substituted 5‑Fluoro-1,3-dihydro-oxazine β‑Secretase (BACE1) Inhibitors via Active Conformation Stabilization

    No full text
    β-Secretase (BACE1) has an essential role in the production of amyloid β peptides that accumulate in patients with Alzheimer’s disease (AD). Thus, inhibition of BACE1 is considered to be a disease-modifying approach for the treatment of AD. Our hit-to-lead efforts led to a cellular potent 1,3-dihydro-oxazine <b>6</b>, which however inhibited hERG and showed high P-gp efflux. The close analogue of 5-fluoro-oxazine <b>8</b> reduced P-gp efflux; further introduction of electron withdrawing groups at the 6-position improved potency and also mitigated P-gp efflux and hERG inhibition. Changing to a pyrazine followed by optimization of substituents on both the oxazine and the pyrazine culminated in <b>24</b> with robust Aβ reduction in vivo at low doses as well as reduced CYP2D6 inhibition. On the basis of the X-ray analysis and the QM calculation of given dihydro-oxazines, we reasoned that the substituents at the 6-position as well as the 5-fluorine on the oxazine would stabilize a bioactive conformation to increase potency

    Discovery of Imidazo[1,2‑<i>b</i>]pyridazine Derivatives: Selective and Orally Available Mps1 (TTK) Kinase Inhibitors Exhibiting Remarkable Antiproliferative Activity

    No full text
    Monopolar spindle 1 (Mps1) is an attractive oncology target due to its high expression level in cancer cells as well as the correlation of its expression levels with histological grades of cancers. An imidazo­[1,2-<i>a</i>]­pyrazine <b>10a</b> was identified during an HTS campaign. Although <b>10a</b> exhibited good biochemical activity, its moderate cellular as well as antiproliferative activities needed to be improved. The cocrystal structure of an analogue of <b>10a</b> guided our lead optimization to introduce substituents at the 6-position of the scaffold, giving the 6-aryl substituted <b>21b</b> which had improved cellular activity but no oral bioavailability in rat. Property-based optimization at the 6-position and a scaffold change led to the discovery of the imidazo­[1,2-<i>b</i>]­pyridazine-based <b>27f</b>, an extremely potent (cellular Mps1 IC<sub>50</sub> = 0.70 nM, A549 IC<sub>50</sub> = 6.0 nM), selective Mps1 inhibitor over 192 kinases, which could be orally administered and was active in vivo. This <b>27f</b> demonstrated remarkable antiproliferative activity in the nanomolar range against various tissue cancer cell lines

    Rational Design of Novel 1,3-Oxazine Based β‑Secretase (BACE1) Inhibitors: Incorporation of a Double Bond To Reduce P‑gp Efflux Leading to Robust Aβ Reduction in the Brain

    No full text
    Accumulation of Aβ peptides is a hallmark of Alzheimer’s disease (AD) and is considered a causal factor in the pathogenesis of AD. β-Secretase (BACE1) is a key enzyme responsible for producing Aβ peptides, and thus agents that inhibit BACE1 should be beneficial for disease-modifying treatment of AD. Here we describe the discovery and optimization of novel oxazine-based BACE1 inhibitors by lowering amidine basicity with the incorporation of a double bond to improve brain penetration. Starting from a 1,3-dihydrooxazine lead <b>6</b> identified by a hit-to-lead SAR following HTS, we adopted a p<i>K</i><sub>a</sub> lowering strategy to reduce the P-gp efflux and the high hERG potential leading to the discovery of <b>15</b> that produced significant Aβ reduction with long duration in pharmacodynamic models and exhibited wide safety margins in cardiovascular safety models. This compound improved the brain-to-plasma ratio relative to <b>6</b> by reducing P-gp recognition, which was demonstrated by a P-gp knockout mouse model

    Indazole-Based Potent and Cell-Active Mps1 Kinase Inhibitors: Rational Design from Pan-Kinase Inhibitor Anthrapyrazolone (SP600125)

    No full text
    Monopolar spindle 1 (Mps1) is essential for centrosome duplication, the spindle assembly check point, and the maintenance of chromosomal instability. Mps1 is highly expressed in cancer cells, and its expression levels correlate with the histological grades of cancers. Thus, selective Mps1 inhibitors offer an attractive opportunity for the development of novel cancer therapies. To design novel Mps1 inhibitors, we utilized the pan-kinase inhibitor anthrapyrazolone (<b>4</b>, SP600125) and its crystal structure bound to JNK1. Our design efforts led to the identification of indazole-based lead <b>6</b> with an Mps1 IC<sub>50</sub> value of 498 nM. Optimization of the 3- and 6-positions on the indazole core of <b>6</b> resulted in <b>23c</b> with improved Mps1 activity (IC<sub>50</sub> = 3.06 nM). Finally, application of structure-based design using the X-ray structure of <b>23d</b> bound to Mps1 culminated in the discovery of <b>32a</b> and <b>32b</b> with improved potency for cellular Mps1 and A549 lung cancer cells. Moreover, <b>32a</b> and <b>32b</b> exhibited reasonable selectivities over 120 and 166 kinases, respectively

    Diaminopyridine-Based Potent and Selective Mps1 Kinase Inhibitors Binding to an Unusual Flipped-Peptide Conformation

    No full text
    Monopolar spindle 1 (Mps1) is an attractive cancer drug target due to the important role that it plays in centrosome duplication, the spindle assembly checkpoint, and the maintenance of chromosomal stability. A design based on JNK inhibitors with an aminopyridine scaffold and subsequent modifications identified diaminopyridine <b>9</b> with an IC<sub>50</sub> of 37 nM. The X-ray structure of <b>9</b> revealed that the Cys604 carbonyl group of the hinge region flips to form a hydrogen bond with the aniline NH group in <b>9</b>. Further optimization of <b>9</b> led to <b>12</b> with improved cellular activity, suitable pharmacokinetic profiles, and good in vivo efficacy in the mouse A549 xenograft model. Moreover, <b>12</b> displayed excellent selectivity over 95 kinases, indicating the contribution of its unusual flipped-peptide conformation to its selectivity
    corecore