286 research outputs found

    The Quiescent Cellular State is Arf/p53-Dependent and Associated with H2AX Downregulation and Genome Stability

    Get PDF
    Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability

    Time and Composition Dependent Electrical Conductivity of Vanadate Glasses Showing Both Cationic Conduction and Electronic Conduction

    Get PDF
    Silver vanadate glasses show electrical conductivity higher than 10–2 S cm–1, caused by the electron hopping from VIV to VV together with an ionic conduction due to Ag+. Lithium vanadate glasses show electrical conductivity of the order of 10–6 S cm–1 which is primarily due to an electron hopping from VIV to VV. Fraction of the Ag+ or Li+ conduction and that of electron hopping from VIV to VV can be estimated by measuring both AC- and DC-conductivities. The latter becomes saturated after 50 min or more due to polarization of the mobile Ag+ or Li+ ions at around the cathode

    The Role of S1P2 in Atherogenesis

    Get PDF
    Aim: The bioactive lipid, sphingosine-1-phosphate (S1P), has various roles in the physiology and pathophysiology of many diseases. There are five S1P receptors; however, the role of each S1P receptor in atherogenesis is still obscure. Here we investigated the contribution of S1P receptor 2 (S1P2) to atherogenesis by using a specific S1P2 antagonist, ONO-5430514, in apolipoprotein E-deficient (Apoe−/− ) mice. Methods: Apoe−/− mice fed with a western-type diet (WTD) received ONO-5430514 (30 mg/kg/day) or vehicle. To examine the effect on atherogenesis, Sudan IV staining, histological analysis, qPCR, and vascular reactivity assay was performed. Human umbilical vein endothelial cells (HUVEC) were used for in vitro experiments. Results: WTD-fed Apoe−/− mice had significantly higher S1P2 expression in the aorta compared with wild-type mice. S1P2 antagonist treatment for 20 weeks reduced atherosclerotic lesion development (p<0.05). S1P2 antagonist treatment for 8 weeks ameliorated endothelial dysfunction (p<0.05) accompanied with significant reduction of lipid deposition, macrophage accumulation, and inflammatory molecule expression in the aorta compared with vehicle. S1P2 antagonist attenuated the phosphorylation of JNK in the abdominal aorta compared with vehicle (p<0.05). In HUVEC, S1P promoted inflammatory molecule expression such as MCP-1 and VCAM-1 (p<0.001), which was attenuated by S1P2 antagonist or a JNK inhibitor (p<0.01). S1P2 antagonist also inhibited S1P-induced JNK phosphorylation in HUVEC (p<0.05). Conclusions: Our results suggested that an S1P2 antagonist attenuates endothelial dysfunction and prevents atherogenesis. S1P2, which promotes inflammatory activation of endothelial cells, might be a therapeutic target for atherosclerosis

    1-Methyl-2-undecyl-4(1H)-quinolone, a derivative of quinolone alkaloid evocarpine, attenuates high phosphate-induced calcification of human aortic valve interstitial cells by inhibiting phosphate cotransporter PiT-1

    Get PDF
    AbstractAn abnormally high serum phosphate level induces calcific aortic stenosis (CAS), which is characterized by ectopic valve calcification and stenosis of the orifice area. Inhibition of ectopic calcification is a critical function of any internal medical therapy for CAS disease. The aim of the present study was to investigate the inhibitory effects of several derivatives of evocarpine, methanolic extracts from the fruits of Evodia rutaecarpa Bentham (Japanese name: Go-Shu-Yu) on the high phosphate-induced calcification of human aortic valve interstitial cells (HAVICs) obtained from patients with CAS. High phosphate (3.2 mM) concentrations significantly increased the calcification of HAVICs after 7 days of culture. This calcification was completely inhibited in the presence of sodium phosphonoformate (PFA), a selective inhibitor of the type III sodium-dependent phosphate cotransporter (PiT-1). PiT-1 contributes to phosphate uptake, resulting in calcification. 1-Methyl-2-undecyl-4(1H)-quinolone (MUQ; 30–300 nM), but not evocarpine or its derivatives dihydroevocarpine and 1-methyl-2-nonyl-4(1H)-quinolone, inhibited the high phosphate-induced HAVICs calcification in a concentration-dependent manner. Although all of the evocarpine derivatives attenuated alkaline phosphatase activity, only MUQ also decreased PiT-1 gene expression with cellular PiT-1 protein diminution. These results suggest that MUQ mitigated high phosphate-induced HAVICs calcification by inhibiting PiT-1 gene expression

    Augmentation of smad‐dependent BMP signaling in neural crest cells causes craniosynostosis in mice

    Full text link
    Craniosynostosis describes conditions in which one or more sutures of the infant skull are prematurely fused, resulting in facial deformity and delayed brain development. Approximately 20% of human craniosynostoses are thought to result from gene mutations altering growth factor signaling; however, the molecular mechanisms by which these mutations cause craniosynostosis are incompletely characterized, and the causative genes for diverse types of syndromic craniosynostosis have yet to be identified. Here, we show that enhanced bone morphogenetic protein (BMP) signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells, but not in osteoblasts, causes premature suture fusion in mice. In support of a requirement for precisely regulated BMP signaling, this defect was rescued on a Bmpr1a haploinsufficient background, with corresponding normalization of Smad phosphorylation. Moreover, in vivo treatment with LDN‐193189, a selective chemical inhibitor of BMP type I receptor kinases, resulted in partial rescue of craniosynostosis. Enhanced signaling of the fibroblast growth factor (FGF) pathway, which has been implicated in craniosynostosis, was observed in both mutant and rescued mice, suggesting that augmentation of FGF signaling is not the sole cause of premature fusion found in this model. The finding that relatively modest augmentation of Smad‐dependent BMP signaling leads to premature cranial suture fusion suggests an important contribution of dysregulated BMP signaling to syndromic craniosynostoses and potential strategies for early intervention.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/1/jbmr1857.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/2/jbmr1857-0008-sm-SupplFigS8.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/3/jbmr1857-0004-sm-SupplFigS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/4/jbmr1857-0009-sm-SupplFigS9.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/5/jbmr1857-0005-sm-SupplFigS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/6/jbmr1857-0001-sm-SupplFigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/7/jbmr1857-0006-sm-SupplFigS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/8/jbmr1857-0002-sm-SupplFigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/9/jbmr1857-0007-sm-SupplFigS7.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/10/jbmr1857-0003-sm-SupplFigS3.pd

    Steering the Climate System: Using Inertia to Lower the Cost of Policy

    Get PDF
    Conventional wisdom holds that the efficient way to limit warming to a chosen level is to price carbon emissions at a rate that increases exponentially. We show that this “Hotelling” tax on carbon emissions is actually inefficient. The least-cost policy path takes advantage of the climate system’s inertia by growing more slowly than exponentially. Carbon dioxide temporarily overshoots the steady-state level consistent with the temperature limit, and the efficient carbon tax follows an inverse-U-shaped path. Economic models that assume exponentially increasing carbon taxes are overestimating the minimum cost of limiting warming, overestimating the efficient near-term carbon tax, and overvaluing technologies that mature sooner

    Association between the rs1465040 single-nucleotide polymorphism close to the transient receptor potential subfamily C member 3 (TRPC3) gene and postoperative analgesic requirements

    Get PDF
    AbstractAn association between postoperative analgesic requirements in subjects who underwent orthognathic surgery and the rs1465040 single-nucleotide polymorphism close to the transient receptor potential subfamily C member 3 (TRPC3) gene was suggested by our previous genome-wide association study. To verify this association, we analyzed the association between the rs1465040 SNP and analgesic requirements, including opioid requirements, after open abdominal surgery. The association between the rs1465040 SNP and postoperative analgesic requirements was confirmed in the open abdominal surgery group (P = 0.036), suggesting that the TRPC3 SNP may contribute to predicting postoperative analgesic requirements

    Reduced dose of PTCy followed by adjuvant alpha-galactosylceramide enhances GVL effect without sacrificing GVHD suppression

    Get PDF
    Posttransplantation cyclophosphamide (PTCy) has become a popular option for haploidentical hematopoietic stem cell transplantation (HSCT). However, personalized methods to adjust immune intensity after PTCy for each patient's condition have not been well studied. Here, we investigated the effects of reducing the dose of PTCy followed by alpha -galactosylceramide (alpha -GC), a ligand of iNKT cells, on the reciprocal balance between graft-versus-host disease (GVHD) and the graft-versus-leukemia (GVL) effect. In a murine haploidentical HSCT model, insufficient GVHD prevention after reduced-dose PTCy was efficiently compensated for by multiple administrations of alpha -GC. The ligand treatment maintained the enhanced GVL effect after reduced-dose PTCy. Phenotypic analyses revealed that donor-derived B cells presented the ligand and induced preferential skewing to the NKT2 phenotype rather than the NKT1 phenotype, which was followed by the early recovery of all T cell subsets, especially CD4(+)Foxp3(+) regulatory T cells. These studies indicate that alpha -GC administration soon after reduced-dose PTCy restores GVHD-preventing activity and maintains the GVL effect, which is enhanced by reducing the dose of PTCy. Our results provide important information for the development of a novel strategy to optimize PTCy-based transplantation, particularly in patients with a potential relapse risk
    corecore