111 research outputs found

    Impact of Cationic Amino Acid Transporter 1 on Blood- Retinal Barrier Transport of L-Ornithine

    Get PDF
    PURPOSE. To elucidate L-ornithine transport at the blood-retinal barrier (BRB). METHODS. Integration plot and retinal uptake index (RUI) were used to investigate the in vivo [ 3 H]L-ornithine transport across the BRB. In vitro transport studies of [ 3 H]L-ornithine were performed with TR-iBRB2 cells and RPE-J cells, the model cells of the inner and outer BRB, respectively. Immunohistochemistry was performed on cationic amino acid transporter 1 (CAT1/SLC7A1). RESULTS. The apparent influx permeability clearance of [ 3 H]L-ornithine was found to be 18. 7 lL/(minÁg retina), and the RUI of [ 3 H]L-ornithine was reduced by L-ornithine and L-arginine, suggesting the blood-to-retina transport of L-ornithine at the BRB. [ 3 H]L-Ornithine uptake by TR-iBRB2 cells showed a time-, temperature-and concentration-dependence with a MichaelisMenten constant (K m ) of 33.2 lM and a nonsaturable uptake rate (K d ) of 2.18 lL/(minÁmg protein). The uptake was Na þ -independent, and was inhibited by L-ornithine, L-arginine, and L-lysine, suggesting the involvement of CAT1 in L-ornithine transport at the inner BRB. Immunohistochemistry revealed the luminal and abluminal localization of CAT1 at the inner BRB, and at the basal localization at the outer BRB. Retinal pigment epithelium-J cells showed that the basal-to-cell (B-to-C) uptake of [ 3 H]L-ornithine was greater than that of the apical-tocell (A-to-C) uptake, and the B-to-C transport was inhibited by unlabeled L-ornithine, suggesting the involvement of CAT1 in the blood-to-cell transport of L-ornithine across the basal membrane at the outer BRB. CONCLUSIONS. These suggest the involvement of CAT1 in L-ornithine transport at the luminal and abluminal sides of the inner BRB and the basal side of the outer BRB

    Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peripheral administration of lipopolysaccharide (LPS) induces inflammation and increases cerebral prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) concentration. PGE<sub>2 </sub>is eliminated from brain across the blood-brain barrier (BBB) in mice, and this process is inhibited by intracerebral or intravenous pre-administration of anti-inflammatory drugs and antibiotics such as cefmetazole and cefazolin that inhibit multidrug resistance-associated protein 4 (Mrp4/Abcc4)-mediated PGE<sub>2 </sub>transport. The purpose of this study was to examine the effect of LPS-induced inflammation on PGE<sub>2 </sub>elimination from brain, and whether antibiotics further inhibit PGE<sub>2 </sub>elimination in LPS-treated mice.</p> <p>Methods</p> <p>[<sup>3</sup>H]PGE<sub>2 </sub>elimination across the BBB of intraperitoneally LPS-treated mice was assessed by the brain efflux index (BEI) method. Transporter protein amounts in brain capillaries were quantified by liquid chromatography-tandem mass spectrometry.</p> <p>Results</p> <p>The apparent elimination rate of [<sup>3</sup>H]PGE<sub>2 </sub>from brain was lower by 87%, in LPS-treated mice compared with saline-treated mice. The Mrp4 protein amount was unchanged in brain capillaries of LPS-treated mice compared with saline-treated mice, while the protein amounts of organic anion transporter 3 (Oat3/Slc22a8) and organic anion transporting polypeptide 1a4 (Oatp1a4/Slco1a4) were decreased by 26% and 39%, respectively. Either intracerebral or intravenous pre-administration of cefmetazole further inhibited PGE<sub>2 </sub>elimination in LPS-treated mice. However, intracerebral or intravenous pre-administration of cefazolin had little effect on PGE<sub>2 </sub>elimination in LPS-treated mice, or in LPS-untreated mice given Oat3 and Oatp1a4 inhibitors. These results indicate that peripheral administration of cefmetazole inhibits PGE<sub>2 </sub>elimination across the BBB in LPS-treated mice.</p> <p>Conclusion</p> <p>PGE<sub>2 </sub>elimination across the BBB is attenuated in an LPS-induced mouse model of inflammation. Peripheral administration of cefmetazole further inhibits PGE<sub>2 </sub>elimination in LPS-treated mice.</p

    RSV replication is attenuated by counteracting expression of the suppressor of cytokine signaling (SOCS) molecules

    Get PDF
    AbstractHuman RSV causes an annual epidemic of respiratory tract illness in infants and in elderly. Mechanisms by which RSV antagonizes IFN-mediated antiviral responses include inhibition of type I IFN mRNA transcription and blocking signal transduction of JAK/STAT family members. The suppressor of cytokines signaling (SOCS) gene family utilizes a feedback loop to inhibit cytokine responses and block the activation of the JAK/STAT signaling pathway. To evaluate the potential of SOCS molecules to subvert the innate immune response to RSV infection, eight SOCS family genes were examined. RSV infection up-regulated SOCS1, SOCS3, and CIS mRNA expression in HEp-2 cells. Suppression of SOCS1, SOCS3 and CIS by short interfering ribonucleic acid (siRNA) inhibited viral replication. Furthermore, inhibition of SOCS1, SOCS3, or CIS activated type I IFN signaling by inducing STAT1/2 phosphorylation. These results suggest that RSV infection escapes the innate antiviral response by inducing SOCS1, SOCS3 or CIS expression in epithelial cells

    Total Synthesis of Decahydroquinoline Poison Frog Alkaloids ent-cis-195A and cis-211A

    Get PDF
    The total synthesis of two decahydroquinoline poison frog alkaloids ent-cis-195A and cis-211A were achieved in 16 steps (38% overall yield) and 19 steps (31% overall yield), respectively, starting from known compound 1. Both alkaloids were synthesized from the common key intermediate 11 in a divergent fashion, and the absolute stereochemistry of natural cis-211A was determined to be 2R, 4aR, 5R, 6S, and 8aS. Interestingly, the absolute configuration of the parent decahydroquinoline nuclei of cis-211A was the mirror image of that of cis-195A, although both alkaloids were isolated from the same poison frog species, Oophaga (Dendrobates) pumilio, from Panama

    Total Synthesis of Decahydroquinoline Poison Frog Alkaloids ent-\u3ci\u3ecis\u3c/i\u3e-195A and \u3ci\u3ecis\u3c/i\u3e-211A

    Get PDF
    The total synthesis of two decahydroquinoline poison frog alkaloids ent-cis-195A and cis-211A were achieved in 16 steps (38% overall yield) and 19 steps (31% overall yield), respectively, starting from known compound 1. Both alkaloids were synthesized from the common key intermediate 11 in a divergent fashion, and the absolute stereochemistry of natural cis-211A was determined to be 2R, 4aR, 5R, 6S, and 8aS. Interestingly, the absolute configuration of the parent decahydroquinoline nuclei of cis-211A was the mirror image of that of cis-195A, although both alkaloids were isolated from the same poison frog species, Oophaga (Dendrobates) pumilio, from Panama
    corecore