174 research outputs found

    GRAPE-6: The massively-parallel special-purpose computer for astrophysical particle simulation

    Full text link
    In this paper, we describe the architecture and performance of the GRAPE-6 system, a massively-parallel special-purpose computer for astrophysical NN-body simulations. GRAPE-6 is the successor of GRAPE-4, which was completed in 1995 and achieved the theoretical peak speed of 1.08 Tflops. As was the case with GRAPE-4, the primary application of GRAPE-6 is simulation of collisional systems, though it can be used for collisionless systems. The main differences between GRAPE-4 and GRAPE-6 are (a) The processor chip of GRAPE-6 integrates 6 force-calculation pipelines, compared to one pipeline of GRAPE-4 (which needed 3 clock cycles to calculate one interaction), (b) the clock speed is increased from 32 to 90 MHz, and (c) the total number of processor chips is increased from 1728 to 2048. These improvements resulted in the peak speed of 64 Tflops. We also discuss the design of the successor of GRAPE-6.Comment: Accepted for publication in PASJ, scheduled to appear in Vol. 55, No.

    Energy flow during relaxation in an electron-phonon system with multiple modes: A nonequilibrium Green's function study

    Full text link
    We investigate an energy flow in an extended Holstein model describing electron systems coupled to hot-phonons and heat-bath phonons. To analyze the relaxation process after the photo-excitation of electrons, we employ the nonequilibrium dynamical mean-field theory (DMFT). We find the backward energy flow during the relaxation, where the direction of energy transfer between electrons and hot-phonons is reversed. To clarify the microscopic mechanism of the backward energy flow, we introduce the approximated energy flows, which are calculated with the gradient and quasiparticle approximations and are related to the nonequilibrium distribution functions. We compare these approximated energy flows with the full energy flows calculated from the nonequilibrium DMFT. We find that, in the weak electron-hot-phonon coupling regime, the full and approximated energy flows are almost the same, meaning that the relaxation dynamics can be correctly understood in terms of the nonequilibrium distribution functions. As the strength of the electron-hot-phonon coupling increases, the approximated energy flow fails to qualitatively reproduce the full energy flow. This indicates that the microscopic origin of the energy flow cannot be solely explained by the nonequilibrium distribution functions. By comparing the energy flows with different levels of approximation, we reveal the role of the gradient and quasiparticle approximations.Comment: 20 pages, 12 figure

    Nonprofit Business Plan Development: From Vision, Mission and Values to Implementation

    Get PDF
    Describes steps for nonprofit planning, with sections that cover organizational assessment, vision and mission statements, goal-setting, and plan implementation

    The Heterochromatin Block That Functions as a Rod Cell Microlens in Owl Monkeys Formed within a 15-Myr Time Span

    Get PDF
    In rod cells of many nocturnal mammals, heterochromatin localizes to the central region of the nucleus and serves as a lens to send light efficiently to the photoreceptor region. The genus Aotus (owl monkeys) is commonly considered to have undergone a shift from diurnal to nocturnal lifestyle. We recently demonstrated that rod cells of the Aotus species Aotus azarae possess a heterochromatin block at the center of its nucleus. The purpose of the present study was to estimate the time span in which the formation of the heterochromatin block took place. We performed three-dimensional hybridization analysis of the rod cell of another species, Aotus lemurinus. This analysis revealed the presence of a heterochromatin block that consisted of the same DNA components as those in A. azarae. These results indicate that the formation was complete at or before the separation of the two species. Based on the commonly accepted evolutionary history of New World monkeys and specifically of owl monkeys, the time span for the entire formation process was estimated to be 15 Myr at most

    Acute appendicitis in a rheumatoid arthritis patient treated with tocilizumab: report of a case

    Get PDF
    A 55-year-old woman had been treated for rheumatoid arthritis with tocilizumab 1 month prior to the onset of mild abdominal pain. Computed tomography revealed swelling of the appendix and ascites around the appendix. She was diagnosed with acute appendicitis and underwent emergency surgery. Although her symptoms and laboratory data indicated mild infection, surgery was conducted because of the computed tomography findings and because we believed that the physical findings and laboratory data were not dependable due to the tocilizumab.Upon surgery, a perforated inflamed appendix and abscess formation around the appendix were confirmed. Tocilizumab, which is relatively new, may conceal signs of infection or dull response to tests such as the Blumberg sign for peritonitis. It should be widely noted that the physical findings and laboratory data of patients with abdominal distress under tocilizumab treatment may be misleading

    Network hygiene, incentives, and regulation: Deployment of source address validation in the internet

    Get PDF
    The Spoofer project has collected data on the deployment and characteristics of IP source address validation on the Internet since 2005. Data from the project comes from participants who install an active probing client that runs in the background. The client automatically runs tests both periodically and when it detects a new network attachment point. We analyze the rich dataset of Spoofer tests in multiple dimensions: across time, networks, autonomous systems, countries, and by Internet protocol version. In our data for the year ending August 2019, at least a quarter of tested ASes did not filter packets with spoofed source addresses leaving their networks. We show that routers performing Network Address Translation do not always filter spoofed packets, as 6.4% of IPv4/24 tested in the year ending August 2019 did not filter. Worse, at least two thirds of tested ASes did not filter packets entering their networks with source addresses claiming to be from within their network that arrived from outside their network. We explore several approaches to encouraging remediation and the challenges of evaluating their impact. While we have been able to remediate 352 IPv4/24, we have found an order of magnitude more IPv4/24 that remains unremediated, despite myriad remediation strategies, with 21% unremediated for more than six months. Our analysis provides the most complete and confident picture of the Internet's susceptibility to date of this long-standing vulnerability. Although there is no simple solution to address the remaining long-tail of unremediated networks, we conclude with a discussion of possible non-technical interventions, and demonstrate how the platform can support evaluation of the impact of such interventions over time
    corecore