2,251 research outputs found

    Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager

    Get PDF
    We present the design of a reflector system that can rapidly scan and refocus a terahertz beam for high-resolution standoff imaging applications. The proposed optical system utilizes a confocal Gregorian geometry with a small mechanical rotating mirror and an axial displacement of the feed. For operation at submillimeter wavelengths and standoff ranges of many meters, the imaging targets are electrically very close to the antenna aperture. Therefore the main reflector surface must be an ellipse, instead of a parabola, in order to achieve the best imaging performance. Here we demonstrate how a simple design equivalence can be used to generalize the design of a Gregorian reflector system based on a paraboloidal main reflector to one with an ellipsoidal main reflector. The system parameters are determined by minimizing the optical path length error, and the results are validated with numerical simulations from the commercial antenna software package GRASP. The system is able to scan the beam over 0.5 m in cross-range at a 25 m standoff range with less than 1% increase of the half-power beam-width

    Association of physical and behavioral characteristics with menstrual cycle patterns in women age 29-31 years

    Get PDF
    Journal ArticleWe examined the association between menstrual cycle characteristics(cycle length, variability, and bleeding length) and physical and behavioral attributes in 766 women age 29-31 years. Menstrual cycled at a were prospectively recorded as part of the Menstruation and Reproductive History Study of college women in Minnesota, begun by Alan Treloar in 1934. Data on life time height, weight, physical activity, alcohol and caffeine consumption, and smoking history were collected in 1990 using a self-administered questionnaire. Cycle variability, as measured by the standard deviation of the cycle length, was increased, and menstrual cycles ≥-42 days in length were more common among women in the lowest quartile of Quetelet

    Time-Delay Multiplexing of Two Beams in a Terahertz Imaging Radar

    Get PDF
    We demonstrate a time-delay multiplexing technique that doubles the frame rate of a 660–690-GHz imaging radar with minimal additional instrument complexity. This is done by simultaneously projecting two offset, orthogonally polarized radar beams generated and detected by a common source and receiver. Beam splitting and polarization rotation is accomplished with a custom designed waveguide hybrid coupler and twist. A relative time lag of approximately 2 ns between the beams’ waveforms is introduced using a quasi-optical delay line, followed by spatial recombination using a selectively reflective wire grid. This delay is much longer than the approximately 20-ps time-of-flight resolution of the 30-GHz bandwidth radar, permitting the two beams’ reflected signals from a compact target to be easily distinguished in digital post-processing of the single receiver channel

    Improved fidelity of triggered entangled photons from single quantum dots

    Get PDF
    We demonstrate the on-demand emission of polarisation-entangled photon pairs from the biexciton cascade of a single InAs quantum dot embedded in a GaAs/AlAs planar microcavity. Improvements in the sample design blue shifts the wetting layer to reduce the contribution of background light in the measurements. Results presented show that >70% of the detected photon pairs are entangled. The high fidelity of the (|HxxHx>+|VxxVx>)/2^0.5 state that we determine is sufficient to satisfy numerous tests for entanglement. The improved quality of entanglement represents a significant step towards the realisation of a practical quantum dot source compatible with applications in quantum information.Comment: 9 pages. Paper is available free of charge at http://www.iop.org/EJ/abstract/1367-2630/8/2/029/, see also 'A semiconductor source of triggered entangled photon pairs', R. M. Stevenson et al., Nature 439, 179 (2006

    Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar

    Get PDF
    We show experimentally that a high-resolution imaging radar operating at 576–605 GHz is capable of detecting weapons concealed by clothing at standoff ranges of 4–25 m. We also demonstrate the critical advantage of 3-D image reconstruction for visualizing hidden objects using active-illumination coherent terahertz imaging. The present system can image a torso with <1 cm resolution at 4 m standoff in about five minutes. Greater standoff distances and much higher frame rates should be achievable by capitalizing on the bandwidth, output power, and compactness of solid state Schottky-diode based terahertz mixers and multiplied sources

    Multifrequency radar observations of clouds and precipitation including the G-band

    Get PDF
    Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research, something that until now was only discussed in theory. The field experiment, which coordinated an X-, Ka-, W- and G-band radar, revealed that the Ka–G pairing can generate differential reflectivity signal several decibels larger than the traditional Ka–W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes. The observations also showed that G-band signals experience non-Rayleigh scattering in regions where Ka- and W-band signal do not, thus demonstrating the potential of G-band radars for sizing sub-millimeter ice crystals and droplets. Observed peculiar radar reflectivity patterns also suggest that G-band radars could be used to gain insight into the melting behavior of small ice crystals. G-band signal interpretation is challenging, because attenuation and non-Rayleigh effects are typically intertwined. An ideal liquid-free period allowed us to use triple-frequency Ka–W–G observations to test existing ice scattering libraries, and the results raise questions on their comprehensiveness. Overall, this work reinforces the importance of deploying radars (1) with sensitivity sufficient enough to detect small Rayleigh scatters at cloud top in order to derive estimates of path-integrated hydrometeor attenuation, a key constraint for microphysical retrievals; (2) with sensitivity sufficient enough to overcome liquid attenuation, to reveal the larger differential signals generated from using the G-band as part of a multifrequency deployment; and (3) capable of monitoring atmospheric gases to reduce related uncertainty

    International children's accelerometry database (ICAD): design and methods.

    Get PDF
    BACKGROUND: Over the past decade, accelerometers have increased in popularity as an objective measure of physical activity in free-living individuals. Evidence suggests that objective measures, rather than subjective tools such as questionnaires, are more likely to detect associations between physical activity and health in children. To date, a number of studies of children and adolescents across diverse cultures around the globe have collected accelerometer measures of physical activity accompanied by a broad range of predictor variables and associated health outcomes. The International Children's Accelerometry Database (ICAD) project pooled and reduced raw accelerometer data using standardized methods to create comparable outcome variables across studies. Such data pooling has the potential to improve our knowledge regarding the strength of relationships between physical activity and health. This manuscript describes the contributing studies, outlines the standardized methods used to process the accelerometer data and provides the initial questions which will be addressed using this novel data repository. METHODS: Between September 2008 and May 2010 46,131 raw Actigraph data files and accompanying anthropometric, demographic and health data collected on children (aged 3-18 years) were obtained from 20 studies worldwide and data was reduced using standardized analytical methods. RESULTS: When using ≥ 8, ≥ 10 and ≥ 12 hrs of wear per day as a criterion, 96%, 93.5% and 86.2% of the males, respectively, and 96.3%, 93.7% and 86% of the females, respectively, had at least one valid day of data. CONCLUSIONS: Pooling raw accelerometer data and accompanying phenotypic data from a number of studies has the potential to: a) increase statistical power due to a large sample size, b) create a more heterogeneous and potentially more representative sample, c) standardize and optimize the analytical methods used in the generation of outcome variables, and d) provide a means to study the causes of inter-study variability in physical activity. Methodological challenges include inflated variability in accelerometry measurements and the wide variation in tools and methods used to collect non-accelerometer data.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore