9 research outputs found

    A Multi-Level Approach to Outreach for Geologic Sequestration Projects

    Get PDF
    AbstractPublic perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles

    Management of uncertainties on parameters elicited by experts – Applications to sea-level rise and to CO 2 storage operations risk assessment

    Get PDF
    International audienceIn a context of high degree of uncertainty, when very few data are available, experts are commonly requested to provide their opinions on input parameters of risk assessment models. Not only might each expert express a certain degree of uncertainty on his/her own statements, but the set of information collected from the pool of experts introduces an additional level of uncertainty. It is indeed very unlikely that all experts agree on exactly the same data, especially regarding parameters needed for natural risk assessments. In some cases, their opinions may differ only slightly (e.g. the most plausible value for a parameter is similar for different experts, and they only disagree on the level of uncertainties that taint the said value) while on other cases they may express incompatible opinions for a same parameter. Dealing with these different kinds of uncertainties remains a challenge for assessing geological hazards or/and risks. Extra-probabilistic approaches (such as the Dempster-Shafer theory or the possibility theory) have shown to offer promising solutions for representing parameters on which the knowledge is limited. It is the case for instance when the available information prevents an expert from identifying a unique probability law to picture the total uncertainty. Moreover, such approaches are known to be particularly flexible when it comes to aggregating several and potentially conflicting opinions. We therefore propose to discuss the opportunity of applying these new theories for managing the uncertainties on parameters elicited by experts, by a comparison with the application of more classical probability approaches. The discussion is based on two different examples. The first example deals with the estimation of the injected CO 2 plume extent in a reservoir in the context of CO 2 geological storage. This estimation requires information on the effective porosity of the reservoir, which has been estimated by 14 different experts. The Dempster-Shafer theory has been used to represent and aggregate these pieces of information. The results of different aggregation rules as well as those of a classical probabilistic approach are compared with the purpose of highlighting the elements each of them could provide to the decision-maker (Manceau et al., 2016). The second example focuses on projections of future sea-level rise. Based on IPCC's constraints on the projection quantiles, and on the scientific community consensus level on the physical limits to future sea-level rise, a possibility distribution of the projections by 2100 under the RCP 8.5 scenario has been established. This possibility distribution has been confronted with a set of previously published probabilistic sea-level projections, with a focus on their ability to explore high ranges of sea-level rise (Le Cozannet et al., 2016). These two examples are complementary in the sense that they allow to address various aspects of the problem (e.g. representation of different types of information, conflict among experts, sources dependence). Moreover, we believe that the issues faced during these two experiences can be generalized to many risks/hazards assessment situations. References Manceau, JC., Loschetter, A., Rohmer, J., de Lary, L., Le Guénan, T., Hnottavange-Telleen, K. (2016). Dealing with uncertainty on parameters elicited from a pool of experts for CCS risk assessment. Congrès λµ 20 (St-Malo, France). Le Cozannet G., Manceau JC., Rohmer, J. (2016). Bounding probabilistic sea-level rise projections within the framework of the possibility theory. Accepted in Environmental Research Letters

    Geological Storage of CO\u3csub\u3e2\u3c/sub\u3e in Sub-Seafloor Basalt: The CarbonSAFE Pre-Feasibility Study Offshore Washington State and British Columbia

    Get PDF
    The CarbonSAFE Cascadia project team is conducting a pre-feasibility study to evaluate technical and nontechnical aspects of collecting and storing 50 MMT of CO2 in a safe, ocean basalt reservoir offshore from Washington State and British Columbia. Sub-seafloor basalts are very common on Earth and enable CO2 mineralization as a long-term storage mechanism, permanently sequestering the carbon in solid rock form. Our project goals include the evaluation of this reservoir as an industrial-scale CO2 storage complex, developing potential source/transport scenarios, conducting laboratory and modeling studies to determine the potential capacity of the reservoir, and completing an assessment of economic, regulatory and project management risks. Potential scenarios include sources and transport options in the USA and in Canada. The overall project network consists of a coordination team of researchers from collaborating academic institutions, subcontractors, and external participants. Lessons learned from this study at the Cascadia Basin location may be transferrable elsewhere around the globe

    Geological Storage of CO2 in Sub-Seafloor Basalt: The CarbonSAFE Pre-Feasibility Study Offshore Washington State and British Columbia

    Get PDF
    The CarbonSAFE Cascadia project team is conducting a pre-feasibility study to evaluate technical and nontechnical aspects of collecting and storing 50 MMT of CO2 in a safe, ocean basalt reservoir offshore from Washington State and British Columbia. Sub-seafloor basalts are very common on Earth and enable CO2 mineralization as a long-term storage mechanism, permanently sequestering the carbon in solid rock form. Our project goals include the evaluation of this reservoir as an industrial-scale CO2 storage complex, developing potential source/transport scenarios, conducting laboratory and modeling studies to determine the potential capacity of the reservoir, and completing an assessment of economic, regulatory and project management risks. Potential scenarios include sources and transport options in the USA and in Canada. The overall project network consists of a coordination team of researchers from collaborating academic institutions, subcontractors, and external participants. Lessons learned from this study at the Cascadia Basin location may be transferrable elsewhere around the globe

    La gestion des incertitudes sur des paramètres estimés par un groupe d’experts pour l’analyse des risques du stockage de CO2

    Get PDF
    Pour les exploitations du sous-sol, les données géologiques sont souvent peu nombreuses lorsque les projets sont à un stade précoce de développement, et le recours à l’avis d’experts est fréquent. Il est alors nécessaire de gérer les informations fournies par plusieurs experts, potentiellement conflictuelles. Sur un cas d’étude dédiée au stockage géologique du CO2, deux approches différentes ont été appliquées pour la gestion des incertitudes sur la valeur d’un paramètre estimée par 14 experts différents, une approche classique de type probabiliste ainsi qu’une approche basée sur la théorie de Dempster-Shafer. Les résultats sont discutés pour aider à la prise de décision.Handling potentially conflicting information coming from experts when other available data are scare or inexistent is an important issue for subsurface operations, especially for projects in the early stages of development. On a case study dedicated to the CO2 geological storage technology, two different approaches have been considered to deal with the uncertainties on a parameter value estimated by 14 different experts: a classical probabilistic approach and an approach based on the Dempster-Shafer theory. The results are discussed regarding their ability to help decision-making

    Geological Storage of CO\u3csub\u3e2\u3c/sub\u3e in Sub-Seafloor Basalt: The CarbonSAFE Pre-Feasibility Study Offshore Washington State and British Columbia

    No full text
    The CarbonSAFE Cascadia project team is conducting a pre-feasibility study to evaluate technical and nontechnical aspects of collecting and storing 50 MMT of CO2 in a safe, ocean basalt reservoir offshore from Washington State and British Columbia. Sub-seafloor basalts are very common on Earth and enable CO2 mineralization as a long-term storage mechanism, permanently sequestering the carbon in solid rock form. Our project goals include the evaluation of this reservoir as an industrial-scale CO2 storage complex, developing potential source/transport scenarios, conducting laboratory and modeling studies to determine the potential capacity of the reservoir, and completing an assessment of economic, regulatory and project management risks. Potential scenarios include sources and transport options in the USA and in Canada. The overall project network consists of a coordination team of researchers from collaborating academic institutions, subcontractors, and external participants. Lessons learned from this study at the Cascadia Basin location may be transferrable elsewhere around the globe
    corecore