85 research outputs found

    Massachusetts Offshore Wind Future Cost Study

    Get PDF
    The Special Initiative on Offshore Wind is an independent project at the University of Delaware's College of Earth, Ocean and Environment that supports the advancement of offshore wind as part of a comprehensive solution to the most pressing energy problems facing the United States.  The Special Initiative on Offshore Wind provides expertise, analysis, information sharing, and strategic partnership with industry, advocacy and government stakeholders to build understanding and drive the deployment of offshore wind

    Assessing the wind field over the continental shelf as a resource for electric power

    Get PDF
    To assess the wind power resources of a large continental shelf area, we analyze the 18-year hourly wind records from meteorological stations in the US Middle Atlantic Bight (MAB), comparing areas of coast, estuary, and open shelf. We calculate winds at turbine hub height for the sea breeze compared with synoptic winds and, for each type of site, we compare the seasonal and daily phase match to electrical load. To improve large-scale ocean power resource calculations, we derive an iterative algorithm to determine the surface roughness coefficient (z0). Our method calculates z0 for specific times and locations over the ocean, rather than the prior practice of using a generic z0 that is constant across time and space. Due to lower surface roughness of the ocean, wind speeds are notably higher at hub height, so that in the MAB we find that a representative open shelf site has three times the power content of a nearby land site. Regarding phase match to daily electric load, we find the sea breeze adjacent to the coast is a very good match to this region\u27s electric power load profile. However, the open shelf wind speeds are so much higher (10.9 m s–1 versus 5.7 m s–1 for the comparison period) that the near-coast phase advantage is obviated. We also find more consistent wind power production offshore, with single sites producing at least some power 88 to 92% of the time. By modeling electrically interconnected sites, power production improves to 96.3% with as few as three interconnected wind sites and to 99.3% with 5 interconnected sites

    Response To Review Of Environmental Values in American Culture

    Get PDF
    RESPONSE TO REVIEW OF Environmental Values in American Culture . Reviewed by Willett Kempton, Senior Policy Scientist, Center for Energy and Environmental Policy, University of Delaware

    "Willingness to Pay for Electric Vehicles and their Attributes"

    Get PDF
    This article presents a stated preference study of electric vehicle choice using data from a national survey. We used a choice experiment wherein 3029 respondents were asked to choose between their preferred gasoline vehicle and two electric versions of that preferred vehicle. We estimated a latent class random utility model and used the results to estimate the willingness to pay for five electric vehicle attributes: driving range, charging time, fuel cost saving, pollution reduction, and performance. Driving range, fuel cost savings, and charging time led in importance to respondents. Individuals were willing to pay (wtp) from 35to35 to 75 for a mile of added driving range, with incremental wtp per mile decreasing at higher distances. They were willing to pay from 425to425 to 3250 per hour reduction in charging time (for a 50 mile charge). Respondents capitalized about 5 years of fuel saving into the purchase price of an electric vehicle. We simulated our model over a range of electric vehicle configurations and found that people with the highest values for electric vehicles were willing to pay a premium above their wtp for a gasoline vehicle that ranged from 6000to6000 to 16,000 for electric vehicles with the most desirable attributes. At the same time, our results suggest that battery cost must drop significantly before electric vehicles will find a mass market without subsidy.Electric Vehicles, Stated Preference, Discrete Choice

    "Can Vehicle-to-Grid Revenue Help Electric Vehicles on the Market?"

    Get PDF
    Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the power grid and be programmed to do so at times when power prices are high. Since providing this service can lead to payments to owners of vehicles, it effectively reduces the cost of electric vehicles. Using data from a national stated preference survey (n = 3029), this paper presents the first study of the potential consumer demand for V2G electric vehicles. In our choice experiment, 3029 respondents compared their preferred gasoline vehicle with two V2G electric vehicles. The V2G vehicles were described by a set of electric vehicle attributes and V2G contract requirements such as “required plug-in time” and “guaranteed minimum driving range”. The contract requirements specify a contract between drivers and a power aggregator for providing reserve power to the grid. Our findings suggest the V2G concept is mostly likely to help EVs on the market if power aggregators operate on pay-as-you-go-basis or provide consumers with advanced cash payment (upfront discounts on the price of EVs) in exchange for V2G restrictions.electric vehicles, vehicle-to-grid, stated preference, latent-class model

    Economic analysis of using excess renewable electricity to displace heating fuels

    Get PDF
    AbstractRecent work has shown that for high-penetration renewable electricity systems, it is less expensive to install higher capacity of renewables and to allow generation to exceed load during some hours, rather than to build so much storage that all electricity can be used to meet electrical load. Because excess electricity appears to be cost-optimum, this raises the question as to whether the excess electricity, which in the case of wind power is predominately produced in colder weather, might displace other fuels for purposes such as heat. This study models using excess electricity for heating, based on an analysis of electricity and heat use in a TSO in the North-Eastern part of the United States (PJM Interconnection). The heating system was modeled as heat pump based district heating (HPDH) with thermal energy storage (TES). Thus, excess electricity is transformed into heat, which is easy and cheap to store near the point of use. As an alternative to HPDH, the use of distributed electrical resistive heating coupled with high temperature thermal storage (HTS) was also assessed. In both cases, a natural gas fired boiler (NGB) was modeled to be installed in the building for back-up heat. An algorithm that calculates the total cost of a unit of heat was used to determine the economically optimal size of the system’s main components and the influence that natural gas (NG) and electricity prices have on this optimum. It was found that a system based on heat pumps (HP) and centralized thermal storage supplies building heat at a lower or similar cost than conventional systems. In most cases electric resistive heating with HTS was found to be less cost-effective than HPDH. The consumption of natural gas can be reduced to as little as 3% of that used by an entirely NG-based heater. Also, thermal energy storage was found to be crucial when it comes to reducing the need for fossil fuels for heating (in this model, as backup heat)

    Structures for Environmental Action

    Get PDF
    This article develops a typology of what we term “structures for action”—strategies, mechanisms, and means—used by local environmental groups to facilitate actions such as lifestyle shifts, civic protest, and environmental preservation. Based on data from nineteen groups in several states, we distinguish between internal structures that facilitate action for members of the groups and external structures that facilitate action among nonmembers and other groups. Within both internal and external structures, we identify three dimensions: knowledge, meaning, and praxis. Our typology of structures for action is designed to stimulate further research and to be useful for environmental groups, as well as for other social issue-oriented local groups that seek to be more effective
    • 

    corecore