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Abstract 

Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the 
power grid and be programmed to do so at times when power prices are high. Since providing 
this service can lead to payments to owners of vehicles, it effectively reduces the cost of electric 
vehicles. Using data from a national stated preference survey (n = 3029), this paper presents the 
first study of the potential consumer demand for V2G electric vehicles. In our choice 
experiment, 3029 respondents compared their preferred gasoline vehicle with two V2G electric 
vehicles. The V2G vehicles were described by a set of electric vehicle attributes and V2G 
contract requirements such as “required plug-in time” and “guaranteed minimum driving range”. 
The contract requirements specify a contract between drivers and a power aggregator for 
providing reserve power to the grid. Our findings suggest the V2G concept is mostly likely to 
help EVs on the market if power aggregators operate on pay-as-you-go-basis or provide 
consumers with advanced cash payment (upfront discounts on the price of EVs) in exchange for 
V2G restrictions.  
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I.  Introduction 

 

          Vehicle-to-grid (V2G) power is a new concept in electric vehicle design. It 

involves designing electric vehicles (EVs) so that they can discharge power stored in 

their batteries back to the electric grid.  A grid-integrated vehicle with V2G capability 

has controls that enables it to charge/discharge economically – charge when electricity 

is cheap and discharge when expensive. The idea behind such a design is to use parked 

EVs as a source of reserve power to the electric grid. The electric grid uses reserve 

power to smooth fluctuation in power generation and to respond to unexpected outages. 

This is now done with large generators but may (in the future) also be done with EVs 

using the idle capacity in their batteries. The average US car is parked 95% of the time 

(Pearre, 2011). With proper technology, EVs may be able to provide reserve service at a 

lower cost and pay the owners of EVs for the service.1 

          Designing EVs with V2G capability has two advantages. First, payment to 

owners of EVs may help lower the overall cost of ownership of EVs, which is currently 

above the market price of gasoline vehicles (GVs). Kempton and Tonic (2005), for 

example, show a Toyota RAV4 EV can earn up to $2554 annually from providing 

reserve service to the electric grid. Second, designing EVs with V2G capability 

enhances the environmental benefits of EVs. V2G vehicles can replace generators 

currently providing reserve service. Depending on the type of fuel used by the 

generators, this may have net environmental benefits. V2G vehicles can also support 

renewable sources of energy such as wind and solar (Kempton and Dhanju, 2006). 

Wind and solar have larger fluctuations in output than conventional sources of energy 

due to natural causes and are hence in greater need of storage capacity. V2G vehicles 

                                                 
1 For more on V2G electric vehicles see Kempton and Letendre (1997), Kempton et al (2001), and Kempton and Tomic (2005). 
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could be used for storage during periods of high output and for reserve power during 

periods of low output.   

          These benefits have already attracted the interest of policy makers and power 

companies. However, little is known about consumers’ interest in such vehicles. Will 

consumers embrace the idea of re-selling power to power companies or aggregators of 

power? If so, at what price? Can revenue earned from such a plan help EVs on the 

market?  

          To answer these questions, we administered a web-based stated preference 

survey.  A total of 3029 respondents randomly selected from a national sample 

completed the survey. The survey had two parts: a choice experiment for conventional 

electric vehicles with no V2G capability (hereafter C-EVs) and a choice experiment for 

V2G electric vehicles (hereafter V2G-EVs).  We used data from the first choice 

experiment to estimate consumers’ willingness to pay for C-EVs and their attributes in 

an earlier paper (Hidrue, Parsons, Kempton, and Gardner (2011)). This paper is a 

follow-up focusing on the V2G-EV choice data.  

          We used a latent class random utility model to analyze respondents’ choice of 

V2G-EVs. The model allowed us to capture preference heterogeneity in the data. Our 

analysis indicates that consumer preference for V2G-EVs can be captured in two 

classes, which we label as EV-oriented and GV-oriented (gasoline vehicle) consumers. 

Respondents in the EV-oriented class have a higher proclivity toward V2G-EVs.  To 

assess the impact of designing EVs with V2G capability, we simulated several contracts 

and estimated the payment (or cash back) that respondents would require to sign the 

contracts. The contracts included a minimum number of plug-in hours and a minimum 

guaranteed driving range.  These features are required by power companies to have 

certainty about the availability of power from parked cars when needed. We found 

respondents associate high inconvenience cost with most contracts relative to the cash 

back provided. We also found respondents heavily discount future revenue offered in 

V2G contracts. Our analysis suggests that for the V2G concept to increase the value of 

EVs, power aggregators have either to eliminate V2G contracts (allow consumers to 
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buy and sell at will) or provide cash payments in advance in the form of a reduction in 

the initial purchase price of the vehicle. 

 

 

II. The Concept of Vehicle to Grid 

 

          As noted above vehicle to grid (V2G) power refers to the flow of power from 

electric vehicles back to the power grid. V2G-capable vehicles can be battery electric 

vehicles, plug-in hybrid electric vehicles, or fuel cell electric vehicles. In this study, we 

consider only battery electric vehicles.   

          The basic idea behind the concept of V2G is to use EVs as a source of reserve 

power while the vehicles are parked. The average US car is parked 95% of the time.   

Most of this time no charging is required, so the vehicle’s electric system is unused. If 

EVs can be controlled by a grid operator, and if they can both charge and discharge on 

such a signal, this idle capacity can be used as reserve power to the electric grid. There 

are several markets for such power capacity, traded on wholesale markets by 

Transmission System Operators (TSOs), as well as additional uses of value to power 

distribution companies (electric utilities). Currently large generators are used for 

reserves.  EVs can also provide these reserves and the revenue stream earned from 

providing these electric services may help offset the current high cost of electric 

vehicles.  

          The amount of revenue a V2G vehicle can earn depends on many factors 

including the length of time the vehicle is plugged in and hence available to provide 

reserve service, the size of the vehicle’s battery, the power of the charger, the vehicle’s 
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daily drive, and the type of reserve market. Generally, the value of the reserve service is 

greater: the longer the car is available, the larger the size of the battery, the stronger the 

power of the charger, and the shorter the driver’s driving requirements.  The equations 

defining these quantitative relationships are formally derived in Kempton and Tomic 

(2005). 

          In most TSO markets, the highest value markets for a V2G-EV are the ancillary 

services markets (A/S), called spinning reserves and regulation. Spinning reserves refers 

to a reserve generation capacity that is running and synchronized with the electric grid. 

This reserve is used when there is a sudden power interruption, for example from 

equipment failure. It is rarely used (typically 30 times per year for 5-10 minutes per 

call) but has to be ready on standby 24 hours a day, 7 days a week. Regulation reserve 

refers to a reserve capacity required to regulate frequency fluctuations. To maintain 

quality, generation and load must always be equal. However, in reality these two are 

rarely equal. Power companies smooth the difference by maintaining a regulation 

reserve capacity from which they can draw when there is an excess load (regulation up) 

and to which they can dump when there is an excess generation (regulation down). 

Regulation is called frequently to make small adjustments, typically hundreds of times 

per day.  Like spinning reserve, regulation has to be available 24 hours a day, 7 days a 

week. 

           Spinning reserve and regulation are paid by capacity (kW), that is, they are paid 

by the maximum amount of power available.  These markets pay much less for actual 

transfer of energy (kWh) than for capacity.  In fact, for new V2G markets, the energy 

payment for V2G may not be included. This means, a V2G-EV would be paid for the 

time the vehicle is available to provide the service, regardless of whether or not power 

is consumed. Spinning reserve and regulation together have an annual market value of 
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$12 billion (Kempton and Tomic, 2005).  Because A/S markets like spinning reserves 

and regulation are wholesale, many vehicles must be aggregated by a service provider 

who would collect power capacity from individual cars and sell the aggregate power 

capacity to TSOs or other electric grid market participants.  Here we are primarily 

concerned with the relationship between the aggregator and the individual V2G-EV 

owners. 

          The relationship between the aggregator and the V2G-EV owner may take either 

a contractual form or a non-contractual form. In the former, drivers would sign a 

contract with aggregators and get paid accordingly. Under this system, drivers have an 

obligation to make their cars available for providing reserve service for a specified 

number of hours per day or month. In the latter, drivers would have no obligation to 

provide reserve service. They would be paid on a pay-as-you-go basis for the capacity 

they provide. The advantage of a contract, which is the most widely discussed approach, 

is that it provides more assurance of power capacity to the aggregator, and consequently 

also makes it possible for the aggregator to make up-front payments or investments in 

the customers’ facilities.  In this study, we follow a business model assuming a contract, 

similar to that discussed in Kempton and Tomic (2005) where each V2G vehicle owner 

signs a contract with a power aggregator.  

 

 

 

III. Survey Design 
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          We conducted a national web-based stated-preference survey in 2009.   The 

survey included two choice experiments: one covering the choice of C-EVs and 

focusing on their attributes vis-à-vis GVs and another focusing on V2G-EVs and their 

contract terms. Details about the design of the survey, sample selection, and 

characteristics of the data can be found in Hidrue, Parsons, Kempton, and Gardner 

(2011) -- hereafter referred to as HPKG 2011.  

          We purposely divided the survey into two separate sets of choice experiments to 

improve respondent comprehension of V2G-EVs and to simplify the V2G-EV choice 

experiment. Describing C-EVs alone was complicated, and we felt that including V2G 

attributes simultaneously was too much. The first part of our survey, pertaining to C-

EVs, described and compared C-EVs to gasoline vehicles (GVs).  Respondents were 

given a choice experiment in which they made a choice between their preferred GV and 

two C-EVs of similar configuration (see Figure 1).  This exercise familiarized people 

with the C-EVs and their attributes that differentiated them from GVs – charging time, 

driving range, fuel saving, performance, and reduction in pollution. Then, with a basic 

understanding of C-EVs and the choice experiment process, we introduced the V2G-EV 

concept and a V2G-EV contact.  

          We described how the buyer could charge or discharge the battery and get paid 

for selling power back to the company but would be required to have the vehicle 

plugged in and available to discharge power a fixed number of hours. Then, we asked 

respondents to make two choices related to V2G-EVs. In each of the choice exercises, 

we asked respondents to consider three vehicles: two V2G-EVs with different contract 

terms for buying back power and one GV. The GV was their “preferred gasoline 

vehicle” based on a response they gave to a previous question on the type of vehicle 

they were most likely to purchase next (it could be gasoline or a hybrid gasoline). The 
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preferred GV and the amount of money the respondent planned to spend were 

mentioned in the preamble to the question, reminding the respondent what he or she had 

reported previously. Since we used the same response format and the same vehicle in 

the C-EV choice experiment, it should have been familiar to the respondent. The two 

V2G-EVs were described as V2G enabled electric versions of their preferred GV.  

Respondents were told that other than the characteristics listed, the V2G-EVs were 

identical to their preferred GV. This allowed us, in principle, to control for all other 

design features of the vehicle – interior and exterior amenities, size, color, look, safety, 

reliability, and so forth.   The V2G-EVs were described by five C-EV attributes, three 

V2G contract terms, and price. To reduce the burden of comparing nine attributes 

across alternatives, we kept the five C-EV attributes fixed between the alternatives in 

the choice set in the V2G-EV experiment (see Figure 2). Since these five C-EV 

attributes were the same attributes used in the first choice, we already have information 

on how these are valued by respondents. By holding these attributes constant across 

alternatives in a choice set, we were able to focus respondents’ attention on the contract 

terms and simplify the choice exercise.  

     The alternatives in the V2G –EV choice set then varied in price, required plug-in 

time per day (RPT), guaranteed minimum driving range (GMR), and annul cash back. 

Price was defined as the amount respondents would pay over the price of their preferred 

GV. RPT is defined as average daily plug-in time over the month, which gives drivers 

some flexibility in fulfilling the required number of hours per day by plugging in for 

more hours on days when their schedule allows and plugging in for fewer hours on days 

when it does not. GMR is defined as the minimum driving distance below which the 

power company would not draw down power. Respondents were told that the GMR will 

only occasionally be realized over a month (usually no power or only a modest amount 
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of power would be drawn from a person’s vehicle) and that they could always skip 

contract terms on days of heavy driving requirements so long as the monthly average 

was met.2 Cash back was defined as the annual revenue a driver would earn from 

providing reserve service under the contract. Price was defined as the amount the 

respondent would pay above the price of the respondent’s preferred GV.  To cover the 

relevant range for each attribute, we used four levels for RPT and GMR, six levels for 

cash back and eight levels for price. The idea here is that the power companies or 

aggregators would set these requirements to establish the viable storage capacity of a 

fleet of vehicles.  The larger the required the plug-in time and the lower the minimum 

guaranteed range, the larger the potential for capacity and hence the higher the cash 

back payment.  Table 1 presents the attributes and their levels.  

     We used SAS's choice macro function to configure and generate our choice sets 

(Kuhfeld, 2005). The main challenge in developing the design is obtaining prior 

parameters. Researchers have used different sources to get priors including manager’s 

prior beliefs (Sandor and Wedel, 2001) and estimates from a pilot pretest (Bliemer and 

Rose, 2011).  We used data from our last pretest to estimate the prior parameters. A 

total of 243 respondents participated in the pretest, each answering two choice 

questions. This gave us 486 observations, which we used to estimate a simple 

multinomial logit model. The parameter estimates from this model were then used as 

the prior parameters in developing the final choice design. The final design for the 

V2G-EV choice experiment had 36 choice sets in 18 blocks and a D-efficiency of 6.0. 

The blocks were randomly assigned to respondents during the survey.  

                                                 
2 While we informed respondents that the GMR will only occasionally be realized, in retrospective, it 
would have been better if we had informed them how often it will be realized exactly and perhaps even 
make this an attribute in the model.  
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     We also included a correction for yea saying in our choice response format for about 

one-third of the sample (Blamey et al., 1999).   We were concerned that respondents 

might report purchasing an EV as a way of showing favor for electric vehicles and 

perhaps even green energy policies in general when in fact they would not actually buy.  

The last response option shown in Figure 1 and 2 is our yea-say correction.  That option 

essentially allowed people to say “I like the idea of V2G” (registering favor with 

concept) “but not at these prices” (showing their real likelihood of purchase).  Although 

a large share of the sample chose the yea-say response in the V2G-EV experiment, there 

appeared to be little yea-saying bias in our survey. With the yea-saying treatment, the 

share of V2G-EV choices dropped by on 0.5%. Most of the votes for the yea-saying 

option, in other words, came from respondents who otherwise would have reported 

purchasing a GV.   

 

 

 

IV. Econometric Model 

 

          Our model combines the C-EV choice data with the V2G-EV data and uses a 

structure much like that in HPKG (2011), where we only considered the C-EV choice 

data. Again, we use a latent class random utility model.  

          Our RUM model for an individual has the form  

 

(1) 
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where i  for the two EVs in the choice set and 1, 2 i  0 for the GV. pi is the price 

difference for the EV versus GV. The vector  includes all of the conventional EV 

attributes: driving range, charging time, pollution reduction, performance, and fuel cost 

saving. The vector  includes the V2G contract terms from the second set of choice 

questions: minimum guaranteed driving range, required plug-in time, and cash back 

payments. The variable is a dummy, where 

xi

d

yi

d 1 if the choice pertains to a V2G-EV 

from the second pair of choice questions and d  0if the choice pertains to a C-EV 

from the first pair of choice questions. The errors terms  i nd  a 0  are assumed to have 

type-1 extreme value distributions that give a multinomial logit probability of the form 

 

(2)   

 

where 1 1if the respondent chooses EV 1; 2 1if the respondent chooses EV 2; 

0 1if the respondent chooses GV; ; and 

.   

          The latent class portion of the model, which captures preference heterogeneity, 

has the form  

 

(3) 
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where the first term is the probability of class membership and the 

second term  is the logit probability from equation (2) now defined for each class 

c .  The term z  is a vector of individual characteristics; C is the number of latent 

classes;  so each class has its own set of random utility parameters; 

; and one vector is set equal to zero for normalization so there are 

sets of C and C 1sets of .  Equation (3) enters the likelihood function for each 

respondent and each respondent has four entries – two for the C-EV questions and two 

for the V2G-EV questions.  

 

 

V. Estimation Results  

 

Testing for Scale Differences 

          We tested for scale difference in the C-EV and V2G-EV portions of the model.  A 

scale difference, or what is the same a difference in error variances, may arise for a 

number of reasons – different attribute sets, different vehicle types, and different 

placement of questions in the survey. We used Hensher and Bradley’s (1993) nested 

logit "trick" and found that the scale parameters in the two data sets are not statistically 

different. Given the near equivalence of the two sets of choice questions, this is not a 

surprising result. We constrain the scales to be the same thorough this paper.   
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Choosing Number of Preference Classes 

     We estimated our model with 2, 3, and 4 classes and then compared two measures of 

fit: Akakie Information Criterion (AIC) and Bayesian Information Criterion (BIC). The 

two-class model dominated – the same finding from our earlier paper. The 4-class 

model failed to converged.  The 3-class model converged but included a class with less 

than one percent membership and with standard errors orders of magnitude larger that 

the parameter estimates. In the two-class model, one class was easily identified has EV-

oriented and other GV-oriented.  

 

Parameter Estimates Overlapping With HPKM (2011) 

          The parameter estimates from the class membership model ( ) and parameters 

estimates on the basic EV attributes ( ) are close to the results from HPKG (2011).  

Given our survey design, this was expected. For completeness we still present the 

estimates of and here, but our discussion will be abbreviated since the results are 

nearly the same as in our earlier paper.  

          The class membership model is shown in Table 3. The model normalizes the 

parameter vector to the GV-oriented class so the estimated parameters represent the 

partial contribution of each variable to the likelihood of being in the EV-oriented class. 

For example, the parameter on Gasoline Price is positive and significant indicating that 

people who expect gasoline prices to rise in the next five years are more likely to be in 

the EV-oriented class. The odds-ratio estimates of the coefficients are also shown in 

Table 3. This gives the relative odds of a person being in one class versus the other for a 

given change in an attribute. For example, the odds ratio of 3.0 on Hybird indicates that 
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a person whose preferred GV is a hybrid is three times more likely to be EV-oriented 

than GV-oriented.  

          The class membership model, based on sign and significance of the parameters, 

indicates that the probability of purchasing an EV increases with youth and if you are 

male.  It also increases for those who think gasoline prices will rise, have a green life 

style, have a hybrid car as a preferred GV, and have a residence that will accommodate 

an EV outlet for charging.  People interested in new products and those who make more 

‘long drives’ are also more likely to buy EV. The latter may be driven by a desire for 

greater possible fuel savings.  

          The parameter estimates for the basic EV attributes in the random utility model 

are shown in Table 4. The probability of purchasing an EV increases with driving range, 

reduced charging time, greater fuel savings, better performance, and less pollution. The 

table also shows the implicit prices for each attribute relative to the indicated baseline. 

For example, the willingness to pay for 300 miles of drive range versus the baseline 75 

miles is $11,653.  See HPKG 2011 for more. Now lets turn to the contribution of this 

paper – the analysis of the V2G-EV choice questions.  

 

V2G Parameters 

          The parameter estimates pertaining to the V2G attributes ( ) were estimated 

simultaneously with the parameters in Table 4 and are shown in Table 5. There are four 

attributes:  price difference between a V2G-EV and the respondent’s preferred GV, 

annual cash back under the V2G-EV contract, guaranteed minimum driving range under 

the contract (GMR), and required plug-in time per day under the contract (RPT). The 

levels used for each attribute are given in Table 1.  
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          We specified price and cash back as continuous variables, and GMR and RPT as 

step-wise dummy variables. The latter specification was based on Wald and log-

likelihood ratio tests, which indicate a non-linear effect for these two attributes.  We 

used the most-favorable levels of GMR and RPT as excluded categories, so the 

parameter estimates for these attributes are expected to have negative signs. The price 

coefficient is constrained to be the same for the V2G-EV and C-EV choices.  

          First, comparing the results of the MNL and LC models shows the advantage of 

the LC over MNL Model.  The LC Model provides a statistically better fit and reveals 

significant preference heterogeneity in the data.  

          Second, the V2G-EV constants show a clear split in the classes. The V2G-EV 

constant for the EV-oriented class is positive and significant indicating, all else 

constant, a proclivity to buy electric, while the V2G-EV constant for the GV-oriented 

class is negative and significant indicating the reverse.  These coefficients define our 

two classes.  

          Third, the other parameter estimates work much as expected. Respondents dislike 

high RPT and low GMR -- utility decreases as required plug-in time increases and as 

the minimum guaranteed driving range decreases.  Also, the coefficient on price 

difference is statistically significant and negative, and the coefficient on cash back is 

statistically significant and positive. The latter implies that the more revenue a person 

earns on a V2G vehicle the more likely he/she is to buy it. Again, all this is reasonable.  

          We also present implicit prices in Table 5. The implicit prices for each class are 

estimated by simply dividing the attribute coefficient by the coefficient estimate on 

price. The probability-weighted prices are estimated by weighting the implicit price for 

each person by his/her probability of class membership times the respective implicit 

 15



prices – the sample mean is reported in the table. Comparing the implicit prices between 

the two classes of the LC model shows the preference heterogeneity in the population. 

For example, respondents in the two classes differ in how they value cash back. The 

EV-oriented class discounted cash back less than the GV-oriented class. Annual cash 

back of $1000 over the life of the car is worth around $2400 in present value for the 

EV-oriented and only $1760 for the GV-oriented.  Both classes discount cash back 

heavily. This discounting could be due to a perceived uncertainty about the V2G 

technology or its value.  Or, it may also be due to respondents’ mistrust of power 

companies as some people indicated in our focus groups.  The classes also differ in their 

values for GMR and RPT. The GV-oriented appear to be indifferent to changes in GMT 

and RPT at lower levels but more adverse at the extremes – such as when GMR is as 

low at 25 miles and RPT is a high as 20 hours/day.  

          The weighted implicit prices in Table 5 show that respondents see a high 

inconvenience with GMR and RPT over ranges actually being consider for policy.  

Reducing GMR from 175 to 125 is the equivalent to increasing the initial price of the 

car by $497. Not much. But, increasing it from 175 miles to 75 miles is equivalent to 

increasing the initial price by $4,020, and reducing it from 175 to 25 miles is equivalent 

to an $8,438 increase.  Note that the implicit prices increase at an increasing rate: 

$10/mile (in the range 175 to 125 miles), $70/mile (125 to 75 miles) and $88/mile (75 

to 25 miles). For comparison, the per-mile implicit prices for increased driving range in 

the C-EV model are $33/mile (in the range 300 to 200), $60/mile (150-200 miles), and 

$71/mile (75-150).  There is reasonable correspondence between what these variables 

measure, so the preference consistency here looks good.  

          For RPT, the reference level is 5 hours per day - a rather short period of required 

plug-in time.  On average, increasing RPT from 5 hours to 10 hours is equivalent to 
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increasing initial price by $1,411. Increasing it further to 15 hours and 20 hours is 

equivalent to increasing initial price by $4,454 and $8,504. The per-hour incremental 

costs are $282/hour (5 to 10 hours), $608/hour (10 to 15 hours), and $810/hour (15 to 

20 hours). Values from the C-EV model for charging time for the battery are estimated 

at $434/hour (in the range 5 to 10 hours), $945/hour (1 to 5 hours), and $3,331/hour (1 

hour to 10 minutes).  The correspondence of what these two variables measure is not as 

close as the correspondence of what the range variables measure, hence we should not 

expect similarity in values.  Charging time over the basic set of attributes measures the 

speed with which a battery can be charged, while GMR measures a required plug-in 

time to satisfy a contract whether the battery is a fast-charging one or not. Also, the 

basic charging time measure is over much lower absolute charging time levels (egs., in 

ranges of 10 minutes to and hour and one hour to 5 hours). So, while the two measures 

are somewhat related, the comparison is a bit strained. The high performance of the 

battery appears to be more valuable, which makes sense if people recognize, and we 

assume they do, that most cars are idle for a large fraction of the day and that the 

contract allows for skipping required plug-in times on certain days provided the daily 

average is maintained over a month.  

          Still, we find the RPT coefficients surprisingly high given that the average car is 

idle about 23 hours/day. Although plug-in options may not be available away from 

home (we discussed at-work plug in options in the survey and assume respondents 

considered the likelihood of this for their own circumstance), the range of RPTs we 

used should not have been viewed as too constraining for most people if they keep their 

vehicle plugged in while at home. In any case, respondents did not appear to treat RPT 

as the simple use of idle vehicle time.  
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VI. Can the V2G concept help sell EVs? 

      In this section we use our model to judge whether or not the V2G concept can help 

EVs on the market.  EVs are more costly than GVs and it is still uncertain whether 

battery technologies will improve enough or gasoline prices increase enough for EVs to 

make significant inroads in the market. Here is where V2G-EVs come into the picture.  

Since they provide some payment to owners in the form of cash back for energy 

returned to the grid, they can make EVs attractive to potential buyers.  If the cash 

payments are large relative to the implicit inconvenience costs, then the net added value 

of V2G to an EV will be high and may help EVs on the market.  

          We used our model to see if this might be the case. First, we estimated the cash 

back required to compensate people for different combinations of the RPT and GMR 

(our measures of inconvenience) and compared it to estimated payments that may 

actually be feasible. If the required cash payments are low relative to what is feasible, 

there is potential for net added value to consumers for V2G and hence help for EVs on 

the market.  Second, since cash back was heavily discounted in our model, we also 

considered up-front payment in the form of a reduced vehicle price to compensate for 

the V2G inconveniences.  This should be a more effective way to increase the added 

value of V2G because people value up-front cash significantly more in our experiment.  

           The minimum cash back required to compensate a person for RPT and GMR 

inconvenience in our model is the value of MCBC  that solves the following equation  

 

(4)       
,
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where the left-hand side is the utility for a C-EV, the right-hand side is the utility for a 

V2G-EV, and -- the individual contract terms 

in the vector y .  This measure simply seeks the cash back value that makes a person 

indifferent between a C-EV and a V2G-EV with contract terms RPT and GMR. Solving 

for MCBC  gives 

 

(5)     MCBC 
EV  V 2G  RPT RPT  GMRGMR  EV  V 2G

CB

 

 

where cancels after we pull the EV and V2G constants (EV ,V 2G ) from the 

vector on both sides.x 3 Since each respondent has some predicted probability of being 

in each of the two classes, we use the following weighted measure of minimum cash 

back compensation in our computations 

 

(6)      MCBCw  PEV MCBCEV  (1 PEV )MCBCGV      

 

where PEV is the probability of membership in the EV-oriented class, 1 PEV  is the 

probability of membership in the GV-oriented class, and MCBCEV and MCBCGV are 

conditional minimum compensation requirements for each class. This approach follows 

Boxall and Adamowicz (2002).  

 The same calculation for minimum up-front price reduction is the value of MPR  

that solves  
                                                 
3 The C-EV constant here is adjusted to correspond to the C-EV attribute levels shown at the bottom of Table 1.  This 
makes them consistent with the EV configuration held fixed in the V2G experiment.    
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(7)      . 

 

In this case the compensatory value is implicitly and asset value in present value terms.  

A weighted measure, MPRw , is derived in the same way as MCBCw  is derived.  

          Our calculation of MCBCwfor several V2G scenarios is shown in Table 6. The 

contracts were constructed using RPT  (= 5, 10, 15 and 20 hours) and GMR(= 25 and 

75 miles). We decided not to use higher GMRs because we wanted to stay within the 

driving range of current and near-term EVs and most have less than 150 miles driving 

range.  

     The estimated minimum required compensation for each contract is shown using a 

Box-Whisker Plot in Figure 3 – the dispersion comes from enumeration over the sample 

since each respondent has a different EV and GV orientation weight. These estimated 

MCBCw’s are annual minimum required contract prices over the sample.  The median 

required compensation ranges from a low of near $2,368 for Contract A (GMR= 75 & 

RPT=5) to a high of near $8,622 for contract H (GMR= 25 & RPT=20). The question 

then is whether or not these amounts, especially those at the minimums in Figure 3 for 

each scenario, since this is where the signing is mostly to take place, are feasible in the 

market.   

          The actual revenue a V2G-EV can earn depends on many factors including the 

type of power market (spinning power versus regulation power), the region of the 

country, power capacity of the connection, hours connected, and so forth.  We used a 

study by Kempton and Tomic (2005) to assess the feasibility of attaining our estimated 

earnings requirements. Kempton and Tomic (2005) estimated the potential net revenue 

a Toyota RAV4 EV can earn with RPT = 18 and GMR = 20. They calculated revenue 
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net of depreciation and other equipment costs associated with providing reserve service.  

Their contract is on the high-inconvenience side of our contract scenarios - something 

like Contract H. Using real world power market data from a 2003 California 

Independent System Operators (CISO) power market, they found, under the best 

scenario (providing regulation service), that a Toyota RAV4 EV could earn net revenue 

of $2,554 annually (close to $2900 in 2009$).  Our Figure 3 shows that the minimum 

required contract payments for a similarly configured contract (GMR= 25 & RPT=20) 

are near $8,000.  Making roughly the same calculations for the other scenarios has little 

affect on the story. Hence, if the Kempton and Tomic (2005) assumptions hold, it would 

appear that V2G is not likely to help EVs on the market if contracts such as those 

described in our survey are used. There are, of course, a number of things that could 

alter this result. Technology is changing fast and may lower the cost at which 

aggregators or power companies can withdraw energy. And, the cost of energy from 

conventional sources could rise making the storage of power more valuable.  Still the 

gap to close is large.   

          A more promising approach for payment would appear to be up-front price 

discounts on V2G vehicles since respondents were shown to discount cash-back 

payments heavily. Figure 4 shows the same Box-Whisker Plot for an up-front cash 

discount.  These are calculated using equation (7). The up-front discount for Contract H 

in this case is near $14,000 for those requiring the minimum compensation.  Annualized 

these over 8 years (as an example contract length and using a 5% discount rate for the 

power company’s money), gives $2,190. This appears to be low enough to bring some 

into the market, since we estimate that aggregators could pay about $2900/year. Still the 

V2G value does not overwhelm the compensation required. 
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          Another strategy that aggregators may consider is a pay-as-you-go contract. 

These contracts would have no required plug-in times. Instead, power companies would 

simply pay owners for power capacity on an hour-by-hour basis, which could vary with 

power prices over time. There would still be the issue of people waking up to a vehicle 

with a much-depleted battery, but consumers would be free to plan against such 

inevitabilities and a GMR could still be used. One difficulty with this approach is the 

uncertainty is poses to aggregators – at any point in time an aggregator cannot be sure 

how much back-up power it has.  Indeed, the main reason for the contracts is for 

aggregators to have greater certainty about its level of back-up power. Presumably, in 

time, using historic data on patterns of usage, aggregators would learn about capacity 

fluctuations (percent of the V2G vehicles plugged-in) from a given fleet size and could 

plan according.  No doubt the size of the required fleet would be larger than under the 

contract terms approach.  There is also the possibility of a hybrid approach where some 

customers sign contracts and other use pay-as-you-go.     

       

 

 

VII. Conclusion 

 

          We found that drivers see high inconvenience cost with signing V2G-EV 

contracts. This is probably due to a combination of many factors, including drivers’ 

desire for flexibility in car use, their lack of awareness of how many hours their cars are 

parked, and their concerns that they may not know how to opt out of some contract 

terms. We also found drivers discount revenue from V2G-EV contracts heavily. This is 
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probably due to driver’s uncertainty about earning money from re-selling power back to 

power companies. The combined effect of the two factors is that drivers demand a high 

price to sign V2G contracts, which will reduce the competitiveness of V2G-EV power 

in the power market. 

          We suggested two strategies as alternatives to the strict cash-back-contract 

approach, which has gotten most of the attention to date. One strategy is to eliminate 

contract requirements completely and allow consumers to provide the service at their 

convenience on a pay-as-you-go basis. This eliminates some of the inconvenience cost 

of signing V2G-EV contracts and makes V2G-EVs more attractive to consumers.  

Another strategy is for power aggregators to consider providing consumers with cash 

payment in advance in exchange for signing a V2G-EV contract. This approach 

eliminates the uncertainty associated with earnings from V2G power and reduces the 

high discount rate consumers seem to apply for revenue from V2G-EV contracts. While 

more research is required, both strategies seem like feasible avenues for the V2G 

technology. 

          On the methodological front, our analysis also offered an approach for conveying 

complex commodities to survey respondents.  We did this by dividing the experiment 

into two separated but logically connected smaller experiments – one for a conventional 

EV and then a second for a vehicle-to-grid EV.  In this way we were able bring 

respondents along slowly as the learned the material and forced them to evaluate their 

options stepwise in the two simpler experiments. In focus groups, we found that the 

stepwise approach improved comprehension. In pretests, we found that it improved the 

sharpness of our parameter estimates.  
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Table 1: Attributes and Levels Used in the V2G Choice Experiment 

 
Attributes Levels  
 
Minimum guaranteed driving range (GMR) 

25 miles 
75 miles   
125 miles  
175 miles 
 

Required plug-in time per day (RPT)  
 

5 hours  
10 hours  
15 hours  
20 hours  
 

Annual cash back payment (CB) $500  
$1,000  
$2,000,  
$3,000  
$4,000  
$5,000 
 

Price relative to  your preferred GV (ΔP) Same  
$1,000 higher 
$2,000 higher,  
$3,000 higher 
$4,000 higher,  
$8,000 higher 
$16,000 higher 
$24,000 higher 

 
The following attributes were held constant in the experiment: 
 
 
Driving range on full battery 

 
200 miles 
 

Time it takes to charge battery for  
50 miles of driving range 
 

1 hour 
 

 
Acceleration relative to your preferred GV 

 
5% faster  
 

 
Pollution relative to your preferred GV  

 
75% lower  
 

Fuel cost Like $1.00/gal gas 
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Table 2: Definition and Descriptive Statistics for Variables Used in LC Model (n = 3029) 

Variable Description % in 
Sample 

Mean 
(SD) 

Young  1 if 18-35 years of age; 0 otherwise 30  

Middle age 1 if 36-55 years of age; 0 otherwise 43  

Old 1 if 56 years of age or above; 0 otherwise 27  

Male 1 if male; 0 otherwise  43  

College 1 if completed a BA or higher degree; 0 otherwise 37  

Income Household income (2009 $) 
 

$60,357 
($42,398) 

Car price Expected amount spent on next vehicle 
 

$23,365 
($9,607) 

Gasoline 
price  

Expected price of regular gasoline in 5 years (nominal dollars) 
 

$4.4 
($1.7) 

Multicar  1 if household owns 2 or more cars; 0 otherwise 62  

Hybrid  1 if household plans to buy a hybrid on next car purchase, 0 
otherwise 33 

 

Outlet 1 if the respondent is very likely or somewhat likely to have a 
place to install an outlet (charger) at their home at the time of 
next vehicle purchase; 0 otherwise 

77 
 

 

New goods 1 if respondent has a tendency to buy new products that come 
on the market; 0 otherwise 

57 
 

Long drive 1 if respondent expects to drive more than 100miles/day at 
least one day a month; 0 otherwise 

70 
 

 

Small car  1 if respondent plans to buy small passenger car on next 
purchase; 0 otherwise 

17 
 

Medium car 1 if respondent plans to buy medium or large passenger car on 
next purchase; 0 otherwise 

41 
 

Large car 1 if respondent plans to buy an SUV, Pickup-truck, or Van on 
next purchase; 0 otherwise 42 

 

Major green 1 if respondent reported making major change in life style and 
shopping habits in the past 5 years to help the environment; 0 
otherwise  

23 
 

Minor green 1 if respondent reported making minor change in life style and 
shopping habits in the past 5 years to help the environment; 0 
otherwise  

60 
 

Not green 1 if respondent reported no change in life style and shopping 
habits in the past 5 years to help the environment; 0 otherwise 

17 
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Table 3: Class Membership Model (GV-oriented is the excluded class)  

Variables  
Coefficient 

 

 
      T-Stat. 

 
Odds  
Ratio 

  
Class membership constant 

 
-2.9           

 

 
-11.8 

 
0.06 

Young 1 0.72 
 

 5.6 2.1 

Middle age1  0.22 
 

1.96 1.2 

Male 0.32 
 

3.4 1.4 

College  0.13 
 

1.3 1.1 

Income (000$)  -0.0023 
 

-1.9 0.99 

Gasoline price ($/gallon)  0.06 
 

2.4 1.1 

Hybrid  1.1 
 

10.2 3.0 

Outlet  1.1 
 

9.9 3.0 

Multicar  -0.04 
 

-0.4 0.96 

Small car2 0.2 
 

1.5 1.2 

Medium car2  0.15 
 

1.5 1.2 

Long drive  0.29 
 

3.0 1.3 

Major green3  1.1 
 

7.6 3.0 

Minor green3  0.68 
 

5.4 2.0 

New goods  0.51 
 

5.6 1.7 

Log likelihood value -9472.1   
    
Sample size 12116 

 
  

See Table 2 for variable definitions. 
1. Excluded category is Old (>56) 
2. Exclude category is Large Car. 
3. Excluded category is Not Green.  
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Table 4: Parameter Estimates and Implicit Prices for the C-EV Portion of the  
                  Latent Class RUM Model  

Parameters Implicit Prices  
GV-Oriented  

Class 
EV-Oriented 

 Class 
Weighted 
Average 

Per Unit 
 
 

EV Constant  -4.05 
(-9.9) 

0.45 
(2.5) 

  

Yea Saying Tendency -0.11 
(-0.93) 

-0.28 
(-2.9) 

  

Price (in 000) -0.167 
(-11.1) 

-0.078 
(-27.1) 

  

Fuel Cost -0.15 
(-1.3) 

-0.33 
(-6.3) 

-$2,776 
 

 

Driving Range on full battery (excluded category is 75 miles)  
150 miles 0.83 

(3.9) 
0.44 
(5.0) 

$5,322 $71 

200 miles 0.89 
(4.2) 

0.84 
(10.0) 

$8,333 $60 

300 miles 1.3 
(6.3) 

1.14 
(11.8) 

$11,653 
 

$33 

Charging time for 50 miles of driving range (excluded category is 10 hours)  
5h 0.58 

(2.7) 
0.09 
(1.2) 

$2,194 $434 

1h 1.05 
(5.3) 

0.45 
(5.7) 

$5,972 $945 

10min 1.31 
(6.7) 

0.74 
(9.4) 

$8,748 
 

$3,331 

Pollution Relative to preferred GV (excluded category is 25% lower)  
50% lower 0.15 

(0.68) 
0.05 
(0.5) 

$726 $29 

75% lower 0.36 
(2.0) 

0.07 
(0.8) 

$1,455 $29.2 

95% lower 0.54 
(2.8) 

0.28 
(3.2) 

$3,466 
 

$101 

Acceleration relative to preferred GV (excluded category is 20% slower)  
5% slower 0.58 

(2.7) 
0.06 
(0.7) 

$1,932 $129 

5% faster 0.91 
(4.1) 

0.28 
(3.2) 

$4,452 $252 

20% faster 1.2 
(5.3) 

0.50 
(5.6) 

$6,631 
 

$145 

Log likelihood -9459.72495    
Sample size 12116    
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Table 5: Parameter Estimates and Implicit Prices for the V2G-EV Portion of the Latent Class RUM 
Model (t-statistics in parenthesis) 
   

 

    Latent Class      
       Model 

Implicit Prices for Latent Class 
Model 

Attributes  
MNL  
Model GV-

Oriented 
Class 

EV-
Oriented 
Class 

GV-
Oriented 
Class 

EV-
Oriented 
Class 

Weighted 
Average 

V2G constant -1.1 
(-8.0) 

-2.07 
(-2.1) 

2.5 
(18.1) 

   

Yea saying tendency -0.22 
(-5.2) 

-0.11 
(-0.81) 

-0.28 
(-2.8) 

   

Price relative to  
preferred GV (000) 

-0.08 
(-26.9) 

-0.17 
(-11.0) 

-0.08 
(-27.2) 

   

Cash Back (000) 0.16 
(11.0) 

0.30 
(6.6) 

0.19 
(10.3) 

$1.76 $2.4 $2.1 

GMR = Guaranteed Minimum Driving Range  
(excluded category is 175 miles):  

  

         125 miles 
 

-0.05 
(-0.9) 

0.26 
(1.4) 

-0.17 
(-2.35) 

$1,5291 -$2,125 -$4971 

          75 miles -0.29 
(-5.1) 

-0.37 
(-1.91) 

-0.44 
(-6.03) 

-$2,1761 -$5,500 -$4,020 

          25 miles -0.66 
(-9.0) 

-1.13 
(-3.8) 

-0.79 
(-9.3) 

-$6.647 -$9,875 -$8,438 

RPT=Length of Required Plug-In Time Per Day 
(excluded category is 5 hours): 

  

         10 hours 
 

-0.11 
(-2.0) 

0.07 
(0.36) 

-0.23 
(-3.1) 

$4121 -$2,875 -$1,4111 

          15 hours -0.32 
(-5.7) 

-0.43 
(-2.1) 

-0.48 
(-6.3) 

-$2,529 -$6,000 -$4,454 

          20 hours -0.63 
(-9.8) 

-1.42 
(-5.5) 

-0.69 
(-8.9) 

-$8,353 -$8,625 -$8,504 

 
Log likelihood value 

 
-10938.8 

 
-9472 

   

Sample size 12064 12116 
 

   

1. Based on a statistically insignificant parameter at the 5% level of confidence. 
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Table 6: Contract Configurations and Required Compensation Under Cash-Back  
                          and Up-Front Payment 

Contract Term 
Scenario 

GMR RPT Median 
Required 
Annual Cash-
Back  

Median 
Required Up-
Front Payment  

A 75 miles 5 hours $2,368 $4,252 
B 75 miles 10 hours $3,052 $5,875 
C 75 miles 15 hours $4,419 $8,741 
D 75 miles 20 hours $6,480 $12,758 
E 25 miles 5 hours $4,511 $8,668 
F 25 miles 10 hours $5,195 $10,292 
G 25 miles 15 hours $6,562 $13,157 
H 25 miles 20 hours $8,622 $16,628 
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Figure 1: Sample C-EV Choice Question   
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Figure 2: Sample V2G-EV Choice Question  
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Figure 3: Box-Whisker Plot Based for Minimum Required Annual Compensation in Cash-Back Terms 
for eight contracts (A through H) listed in Table 6.  The range of required compensation payments is due 
to the variation (heterogeneity) over the sample.   
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Figure 4: Box-Whisker Plot for Upfront Discounts on Purchase of Vehcile for eight contracts (A through 
H) listed in Table 6.  The range of required compensation payments is due to the variation (heterogeneity) 
over the sample.   
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