6 research outputs found

    Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness

    Get PDF
    Near infrared spectroscopy (NIRS) is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC). In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb) response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task

    The expression of VvMYBPA1 in tobacco remodulates the phenylpropanoid pathway and diverts the synthesis of anthocyanins into condensed tannins in flowers

    Get PDF
    Patients in Vegetative State (VS), also known as Unresponsive Wakefulness State (UWS) are deemed to be unaware of themselves or their environment. This is different from patients diagnosed with Minimally Conscious state (MCS), who can have intermittent awareness. In both states, there is a severe impairment of consciousness; these disorders are referred to as disorders of consciousness (DOC) and if the state is prolonged, pDOC. There is growing evidence that some patients who are behaviourally in VS/UWS can show neural activation to environmental stimuli and that this response can be detected using functional brain imaging (fMRI/PET) and electroencephalography (EEG). Recently, it has also been suggested that a more reliable detection of brain responsiveness and hence a more reliable differentiation between VS/UWS and MCS requires person-centred and person-specific stimuli, such as the subject's own name stimulus.In this study we obtained event related potential data (ERP) from 12 healthy subjects and 16 patients in pDOC, five of whom were in the VS/UWS and 11 in the Minimally Conscious State (MCS). We used as the ERP stimuli the subjects' own name, others' names and reversed other names. We performed a sensor level analysis using Statistical Parametric Mapping (SPM) software. Using this paradigm in 4 DOC patients (3 in MCS, and 1 in VS/UWS) we detected a statistically significant difference in EEG response to their own name versus other peoples' names with ERP latencies (~300 ms and ~700 ms post stimuli). Some of these differences were similar to those found in a control group of healthy subjects.This study shows the feasibility of using self-relevant stimuli such as a subject's own name for assessment of brain function in pDOC patients. This neurophysiological test is suitable for bed-side/hospital based assessment of pDOC patients. As it does not require sophisticated scanning equipment it can feasibly be used within a hospital or care setting to help professionals tailor medical and psycho-social management for patients

    A simple intervention for disorders of consciousness- is there a light at the end of the tunnel?

    Get PDF
    Sleep is a physiological state necessary for memory processing, learning and brain plasticity. Patients with disorders of consciousness (DOC) show none or minimal sign of awareness of themselves or their environment but appear to have sleep-wake cycles. The aim of our study was to assess baseline circadian rhythms and sleep in patients with DOC; to optimize circadian rhythm using an intervention combining blue light, melatonin and caffeine, and to identify the impact of this intervention on brain function using event related potentials. We evaluated baseline circadian rhythms and sleep in 17 patients with DOC with 24-h polysomnography (PSG) and 4-hourly saliva melatonin measurements for 48 h. Ten of the 17 patients (5 female, age 30–71) were then treated for 5 weeks with melatonin each night and blue light and caffeine treatment in the mornings. Behavioral assessment of arousal and awareness [Coma recovery scale-revised (CRS-R)], 24-h polysomnography and 4-hourly saliva melatonin measurements, oddball mismatch negativity (MMN) and subject's own name (SON) experiments were performed twice at baseline and following intervention. Baseline sleep was abnormal in all patients. Cosinor analysis of saliva melatonin results revealed that averaged baseline % rhythmicity was low (M: 31%, Range: 13–66.4%, SD: 18.4). However, increase in % Melatonin Rhythm following intervention was statistically significant (p = 0.012). 7 patients showed improvement of CRS-R scores with intervention and this was statistically significant (p = 0.034). All the patients who had improvement of clinical scores also had statistically significant improvement of neurophysiological responses on MMN and SON experiments at group level (p = 0.001). Our study shows that sleep and circadian rhythms are severely deranged in DOC but optimization is possible with melatonin, caffeine and blue light treatment. Clinical and physiological parameters improved with this simple and inexpensive intervention. Optimization of sleep and circadian rhythms should be integrated into rehabilitation programs for people with DOC

    A simple intervention for disorders of consciousness- is there a light at the end of the tunnel?

    Get PDF
    Sleep is a physiological state necessary for memory processing, learning and brain plasticity. Patients with disorders of consciousness (DOC) show none or minimal sign of awareness of themselves or their environment but appear to have sleep-wake cycles. The aim of our study was to assess baseline circadian rhythms and sleep in patients with DOC; to optimize circadian rhythm using an intervention combining blue light, melatonin and caffeine, and to identify the impact of this intervention on brain function using event related potentials. We evaluated baseline circadian rhythms and sleep in 17 patients with DOC with 24-h polysomnography (PSG) and 4-hourly saliva melatonin measurements for 48 h. Ten of the 17 patients (5 female, age 30-71) were then treated for 5 weeks with melatonin each night and blue light and caffeine treatment in the mornings. Behavioral assessment of arousal and awareness [Coma recovery scale-revised (CRS-R)], 24-h polysomnography and 4-hourly saliva melatonin measurements, oddball mismatch negativity (MMN) and subject's own name (SON) experiments were performed twice at baseline and following intervention. Baseline sleep was abnormal in all patients. Cosinor analysis of saliva melatonin results revealed that averaged baseline % rhythmicity was low ( : 31%, Range: 13-66.4%, : 18.4). However, increase in % Melatonin Rhythm following intervention was statistically significant ( = 0.012). 7 patients showed improvement of CRS-R scores with intervention and this was statistically significant ( = 0.034). All the patients who had improvement of clinical scores also had statistically significant improvement of neurophysiological responses on MMN and SON experiments at group level ( = 0.001). Our study shows that sleep and circadian rhythms are severely deranged in DOC but optimization is possible with melatonin, caffeine and blue light treatment. Clinical and physiological parameters improved with this simple and inexpensive intervention. Optimization of sleep and circadian rhythms should be integrated into rehabilitation programs for people with DOC. [Abstract copyright: Copyright © 2022 Yelden, James, Duport, Kempny, Farmer, Leff and Playford.

    Late recovery of awareness in prolonged disorders of consciousness – a cross-sectional cohort study

    No full text
    Purpose: To detect any improvement of awareness in prolonged disorders of consciousness in the long term. Methods: A total of 34 patients with prolonged disorders of consciousness (27 vegetative state and seven minimally conscious state; 16 males; aged 21–73) were included in the study. All patients were initially diagnosed with vegetative/minimally conscious state on admission to our specialist neurological rehabilitation unit. Re-assessment was performed 2–16 years later using Coma Recovery Scale-Revised. Results: Although remaining severely disabled, 32% of the patients showed late improvement of awareness evidenced with development of non-reflexive responses such as reproducible command following and localization behaviors. Most of the late recoveries occurred in patients with subarachnoid hemorrhage (5/11, 45.5%). The ages of patients within the late recovery group (Mean = 45, SD = 11.4) and non-recovery group (Mean = 43, SD = 15.5) were not statistically different (p = 0.76). Conclusions: This study shows that late improvements in awareness are not exceptional in non-traumatic prolonged disorders of consciousness cases. It highlights the importance of long-term follow up of patients with prolonged disorders of consciousness, regardless of the etiology, age, and time passed since the brain injury. Long-term follow up will help clinicians to identify patients who may benefit from further assessment and rehabilitation. Although only one patient achieved recovery of function, recovery of awareness may have important ethical implications especially where withdrawal of artificial nutrition and hydration is considered.Implications for rehabilitationLong-term regular follow-up of people with prolonged disorders of consciousness is important.Albeit with poor functional outcomes late recovery of awareness is possible in both traumatic and non-traumatic prolonged disorders of consciousness cases.Recovery of awareness has significant clinical and ethical implications especially where withdrawal of artificial nutrition and hydration is considered
    corecore