2,384 research outputs found

    The Bose-Hubbard model is QMA-complete

    Full text link
    The Bose-Hubbard model is a system of interacting bosons that live on the vertices of a graph. The particles can move between adjacent vertices and experience a repulsive on-site interaction. The Hamiltonian is determined by a choice of graph that specifies the geometry in which the particles move and interact. We prove that approximating the ground energy of the Bose-Hubbard model on a graph at fixed particle number is QMA-complete. In our QMA-hardness proof, we encode the history of an n-qubit computation in the subspace with at most one particle per site (i.e., hard-core bosons). This feature, along with the well-known mapping between hard-core bosons and spin systems, lets us prove a related result for a class of 2-local Hamiltonians defined by graphs that generalizes the XY model. By avoiding the use of perturbation theory in our analysis, we circumvent the need to multiply terms in the Hamiltonian by large coefficients

    A new construction for a QMA complete 3-local Hamiltonian

    Get PDF
    We present a new way of encoding a quantum computation into a 3-local Hamiltonian. Our construction is novel in that it does not include any terms that induce legal-illegal clock transitions. Therefore, the weights of the terms in the Hamiltonian do not scale with the size of the problem as in previous constructions. This improves the construction by Kempe and Regev, who were the first to prove that 3-local Hamiltonian is complete for the complexity class QMA, the quantum analogue of NP. Quantum k-SAT, a restricted version of the local Hamiltonian problem using only projector terms, was introduced by Bravyi as an analogue of the classical k-SAT problem. Bravyi proved that quantum 4-SAT is complete for the class QMA with one-sided error (QMA_1) and that quantum 2-SAT is in P. We give an encoding of a quantum circuit into a quantum 4-SAT Hamiltonian using only 3-local terms. As an intermediate step to this 3-local construction, we show that quantum 3-SAT for particles with dimensions 3x2x2 (a qutrit and two qubits) is QMA_1 complete. The complexity of quantum 3-SAT with qubits remains an open question.Comment: 11 pages, 4 figure

    Combined Error Correction Techniques for Quantum Computing Architectures

    Get PDF
    Proposals for quantum computing devices are many and varied. They each have unique noise processes that make none of them fully reliable at this time. There are several error correction/avoidance techniques which are valuable for reducing or eliminating errors, but not one, alone, will serve as a panacea. One must therefore take advantage of the strength of each of these techniques so that we may extend the coherence times of the quantum systems and create more reliable computing devices. To this end we give a general strategy for using dynamical decoupling operations on encoded subspaces. These encodings may be of any form; of particular importance are decoherence-free subspaces and quantum error correction codes. We then give means for empirically determining an appropriate set of dynamical decoupling operations for a given experiment. Using these techniques, we then propose a comprehensive encoding solution to many of the problems of quantum computing proposals which use exchange-type interactions. This uses a decoherence-free subspace and an efficient set of dynamical decoupling operations. It also addresses the problems of controllability in solid state quantum dot devices.Comment: Contribution to Proceedings of the 2002 Physics of Quantum Electronics Conference", to be published in J. Mod. Optics. This paper provides a summary and review of quant-ph/0205156 and quant-ph/0112054, and some new result

    Asymptotic entanglement in 1D quantum walks with a time-dependent coined

    Full text link
    Discrete-time quantum walk evolve by a unitary operator which involves two operators a conditional shift in position space and a coin operator. This operator entangles the coin and position degrees of freedom of the walker. In this paper, we investigate the asymptotic behavior of the coin position entanglement (CPE) for an inhomogeneous quantum walk which determined by two orthogonal matrices in one-dimensional lattice. Free parameters of coin operator together provide many conditions under which a measurement perform on the coin state yield the value of entanglement on the resulting position quantum state. We study the problem analytically for all values that two free parameters of coin operator can take and the conditions under which entanglement becomes maximal are sought.Comment: 23 pages, 4 figures, accepted for publication in IJMPB. arXiv admin note: text overlap with arXiv:1001.5326 by other author

    Encoded Universality for Generalized Anisotropic Exchange Hamiltonians

    Get PDF
    We derive an encoded universality representation for a generalized anisotropic exchange Hamiltonian that contains cross-product terms in addition to the usual two-particle exchange terms. The recently developed algebraic approach is used to show that the minimal universality-generating encodings of one logical qubit are based on three physical qubits. We show how to generate both single- and two-qubit operations on the logical qubits, using suitably timed conjugating operations derived from analysis of the commutator algebra. The timing of the operations is seen to be crucial in allowing simplification of the gate sequences for the generalized Hamiltonian to forms similar to that derived previously for the symmetric (XY) anisotropic exchange Hamiltonian. The total number of operations needed for a controlled-Z gate up to local transformations is five. A scalable architecture is proposed.Comment: 11 pages, 4 figure

    Overview of Quantum Error Prevention and Leakage Elimination

    Full text link
    Quantum error prevention strategies will be required to produce a scalable quantum computing device and are of central importance in this regard. Progress in this area has been quite rapid in the past few years. In order to provide an overview of the achievements in this area, we discuss the three major classes of error prevention strategies, the abilities of these methods and the shortcomings. We then discuss the combinations of these strategies which have recently been proposed in the literature. Finally we present recent results in reducing errors on encoded subspaces using decoupling controls. We show how to generally remove mixing of an encoded subspace with external states (termed leakage errors) using decoupling controls. Such controls are known as ``leakage elimination operations'' or ``LEOs.''Comment: 8 pages, no figures, submitted to the proceedings of the Physics of Quantum Electronics, 200

    Continuous-time quantum walks on one-dimension regular networks

    Full text link
    In this paper, we consider continuous-time quantum walks (CTQWs) on one-dimension ring lattice of N nodes in which every node is connected to its 2m nearest neighbors (m on either side). In the framework of the Bloch function ansatz, we calculate the spacetime transition probabilities between two nodes of the lattice. We find that the transport of CTQWs between two different nodes is faster than that of the classical continuous-time random walk (CTRWs). The transport speed, which is defined by the ratio of the shortest path length and propagating time, increases with the connectivity parameter m for both the CTQWs and CTRWs. For fixed parameter m, the transport of CTRWs gets slow with the increase of the shortest distance while the transport (speed) of CTQWs turns out to be a constant value. In the long time limit, depending on the network size N and connectivity parameter m, the limiting probability distributions of CTQWs show various paterns. When the network size N is an even number, the probability of being at the original node differs from that of being at the opposite node, which also depends on the precise value of parameter m.Comment: Typos corrected and Phys. ReV. E comments considered in this versio

    Exchange-Only Dynamical Decoupling in the 3-Qubit Decoherence Free Subsystem

    Full text link
    The Uhrig dynamical decoupling sequence achieves high-order decoupling of a single system qubit from its dephasing bath through the use of bang-bang Pauli pulses at appropriately timed intervals. High-order decoupling of single and multiple qubit systems from baths causing both dephasing and relaxation can also be achieved through the nested application of Uhrig sequences, again using single-qubit Pauli pulses. For the 3-qubit decoherence free subsystem (DFS) and related subsystem encodings, Pauli pulses are not naturally available operations; instead, exchange interactions provide all required encoded operations. Here we demonstrate that exchange interactions alone can achieve high-order decoupling against general noise in the 3-qubit DFS. We present decoupling sequences for a 3-qubit DFS coupled to classical and quantum baths and evaluate the performance of the sequences through numerical simulations

    Asymptotic entanglement in a two-dimensional quantum walk

    Full text link
    The evolution operator of a discrete-time quantum walk involves a conditional shift in position space which entangles the coin and position degrees of freedom of the walker. After several steps, the coin-position entanglement (CPE) converges to a well defined value which depends on the initial state. In this work we provide an analytical method which allows for the exact calculation of the asymptotic reduced density operator and the corresponding CPE for a discrete-time quantum walk on a two-dimensional lattice. We use the von Neumann entropy of the reduced density operator as an entanglement measure. The method is applied to the case of a Hadamard walk for which the dependence of the resulting CPE on initial conditions is obtained. Initial states leading to maximum or minimum CPE are identified and the relation between the coin or position entanglement present in the initial state of the walker and the final level of CPE is discussed. The CPE obtained from separable initial states satisfies an additivity property in terms of CPE of the corresponding one-dimensional cases. Non-local initial conditions are also considered and we find that the extreme case of an initial uniform position distribution leads to the largest CPE variation.Comment: Major revision. Improved structure. Theoretical results are now separated from specific examples. Most figures have been replaced by new versions. The paper is now significantly reduced in size: 11 pages, 7 figure

    ENSO-controlled flooding in the Parana River (1904-1991)

    Get PDF
    • …
    corecore