10,034 research outputs found

    Microwave oven fabricated hybrid memristor devices for non-volatile memory storage

    Get PDF
    © 2014 IOP Publishing Ltd. Novel hybrid non-volatile memories made using an ultra-fast microwave heating method are reported for the first time. The devices, consisting of aligned ZnO nanorods embedded in poly (methyl methacrylate), require no forming step and exhibit reliable and reproducible bipolar resistive switching at low voltages and with low power usage. We attribute these properties to a combination of the high aspect ratio of the nanorods and the polymeric hybrid structure of the device. The extremely easy, fast and low-cost solution based method of fabrication makes possible the simple and quick production of cheap memory cells

    Toward canonical trophic aggregations

    Get PDF
    The attractiveness of the trophic concept is that it was the first attempt at a holistic perspective on an ecosystem which met with any degree of success. Just as temperature, pressure, and volume allow one to characterize the incomprehensible multitude of particulate motions in a simple gas, the hope is that a small set of figures, such as trophic storages or trophic efficiencies, permit one to compare two ecosystems with overwhelmingly disparate complexities. Thus, if it were possible to demonstrate that an arbitrary network of ecosystem flows could be reduced to a trophic configuration, the aggregation process thus defined would become a key component of the evolving discipline of "macroscopic ecology" (see also Odum 1977 and Ulanowicz 1979)

    Involvement of the hypothalamic-pituitary-thyroid axis and its interaction with the hypothalamic-pituitary-adrenal axis in the ontogeny of avian thermoregulation: a review

    Get PDF
    The emergence of thermoregulation in avian species is a complex matter in which neural as well as hormonal processes are involved. In a previous paper, the neural aspects of primary avian thermoregulation were discussed. In this paper the role of the hypothalamus-pituitary-thyroid axis (HPT-axis) and the hypothalamus-pituitary-adrenal axis (HPA-axis) in the ontogeny of avian thermoregulation is evaluated. The regulatory mechanisms and different important hormones of both axes, which have stimulatory or inhibitory effects, are discussed. Because the onset of functionality of the thermoregulatory system is of great interest, the ontogeny and functionality of the hormonal axes are clarified. There is a great difference between precocial and altricial birds in hormonal events as well as in neural processes which are involved in the emergence of thermoregulation. In precocial avian species the HPT-axis becomes functional during the mid- to late embryonic period while the same axis only becomes fully functional during the first week post-hatch in altricial avian species. As early as the sixties, the emergence of homeothermy in chickens was investigated. It was concluded that the thyroid gland plays an important role in the thermoregulatory mechanisms of newly hatched chicks. More recent studies however were not able to show any direct effect of the thyroid hormones on the thermoregulation of day-old chicks, although blocking the conversion of T4 to T3 caused a decrease in body temperature in young chicks. Thyrotropin releasing hormone (TRH) is known to act in thermoregulation in mammals and several authors have found an effect of TRH on the metabolism of young and older chicks. However, the exact mechanism still remains unclear. Because the HPT- and the HPA-axis show close relationships, the role of the HPA-axis in the ontogeny of thermoregulation is also taken into consideration in this review. In mammals as well as in birds, corticotropin releasing hormone (CRH) is involved in the primary thermoregulation. We conclude that the HPT-axis has an important role in the ontogeny of avian thermoregulation. The exact role of the HPA-axis remains largely unclear although at least CRH is definitely of some importance

    The decay of Hill's vortex in a rotating flow

    Get PDF
    Hill's vortex is a classical solution of the incompressible Euler equations which consists of an axisymmetric spherical region of constant vorticity matched to an irrotational external flow. This solution has been shown to be a member of a one-parameter family of steady vortex rings and as such is commonly used as a simple analytic model for a vortex ring. Here, we model the decay of a Hill's vortex in a weakly rotating flow due to the radiation of inertial waves. We derive analytic results for the modification of the vortex structure by rotational effects and the generated wave field using an asymptotic approach where the rotation rate, or inverse Rossby number, is taken to be small. Using this model, we predict the decay of the vortex speed and radius by combining the flux of vortex energy to the wave field with the conservation of peak vorticity. We test our results against numerical simulations of the full axisymmetric Navier–Stokes equations

    Monitoring the Variable Interstellar Absorption toward HD 219188 with HST/STIS

    Full text link
    We discuss the results of continued spectroscopic monitoring of the variable intermediate-velocity (IV) absorption at v = -38 km/s toward HD 219188. After reaching maxima in mid-2000, the column densities of both Na I and Ca II in that IV component declined by factors >= 2 by the end of 2006. Comparisons between HST/STIS echelle spectra obtained in 2001, 2003, and 2004 and HST/GHRS echelle spectra obtained in 1994--1995 indicate the following: (1) The absorption from the dominant species S II, O I, Si II, and Fe II is roughly constant in all four sets of spectra -- suggesting that the total N(H) and the (mild) depletions have not changed significantly over a period of nearly ten years. (2) The column densities of the trace species C I (both ground and excited fine-structure states) and of the excited state C II* all increased by factors of 2--5 between 1995 and 2001 -- implying increases in the hydrogen density n_H (from about 20 cm^{-3} to about 45 cm^{-3}) and in the electron density n_e (by a factor >= 3) over that 6-year period. (3) The column densities of C I and C II* -- and the corresponding inferred n_H and n_e -- then decreased slightly between 2001 and 2004. (4) The changes in C I and C II* are very similar to those seen for Na I and Ca II. The relatively low total N(H) and the modest n_H suggest that the -38 km/s cloud toward HD 219188 is not a very dense knot or filament. Partial ionization of hydrogen appears to be responsible for the enhanced abundances of Na I, C I, Ca II, and C II*. In this case, the variations in those species appear to reflect differences in density and ionization [and not N(H)] over scales of tens of AU.Comment: 33 pages, 6 figures, aastex, accepted to Ap
    corecore