6 research outputs found

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    Get PDF
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning

    International prospective observational study investigating the disease course and heterogeneity of paediatric-onset inflammatory bowel disease: the protocol of the PIBD-SETQuality inception cohort study

    Get PDF
    INTRODUCTION: Patients with paediatric-onset inflammatory bowel disease (PIBD) may develop a complicated disease course, including growth failure, bowel resection at young age and treatment-related adverse events, all of which can have significant and lasting effects on the patient's development and quality of life. Unfortunately, we are still not able to fully explain the heterogeneity between patients and their disease course and predict which patients will respond to certain therapies or are most at risk of developing a more complicated disease course. To investigate this, large prospective studies with long-term follow-up are needed. Currently, no such European or Asian international cohorts exist. In this international cohort, we aim to evaluate disease course and which patients are most at risk of therapy non-response or development of complicated disease based on patient and disease characteristics, immune pathology and environmental and socioeconomic factors. METHODS AND ANALYSIS: In this international prospective observational study, which is part of the PIBD Network for Safety, Efficacy, Treatment and Quality improvement of care (PIBD-SETQuality), children diagnosed with inflammatory bowel disease <18 years are included at diagnosis. The follow-up schedule is in line with standard PIBD care and is intended to continue up to 20 years. Patient and disease characteristics, as well as results of investigations, are collected at baseline and during follow-up. In addition, environmental factors are being assessed (eg, parent's smoking behaviour, dietary factors and antibiotic use). In specific centres with the ability to perform extensive immunological analyses, blood samples and intestinal biopsies are being collected and analysed (flow cytometry, plasma proteomics, mRNA expression and immunohistochemistry) in therapy-naïve patients and during follow-up. ETHICS AND DISSEMINATION: Medical ethical approval has been obtained prior to patient recruitment for all sites. The results will be disseminated through peer-reviewed scientific publications. TRIAL REGISTRATION NUMBER: NCT03571373

    VEGF-A and ICAM-1 Gene Polymorphisms as Predictors of Clinical Outcome to First-Line Bevacizumab-Based Treatment in Metastatic Colorectal Cancer

    No full text
    Bevacizumab is used to treat metastatic colorectal cancer (mCRC). However, there are still no available predictors of clinical outcomes. We investigated selected single nucleotide polymorphisms (SNPs) in the genes involved in VEGF-dependent and -independent angiogenesis pathways and other major intracellular signaling pathways involved in the pathogenesis of mCRC as an attempt to find predictors of clinical outcome. Forty-six patients treated with first-line bevacizumab-based chemotherapy were included in this study with a 5 year follow up. Genomic DNA was isolated from whole blood for the analysis of VEGF-A (rs2010963, 1570360, rs699947), ICAM-1 (rs5498, rs1799969) SNPs and from tumor tissue for the detection of genomic variants in KRAS, NRAS, BRAF genes. PCR and next generation sequencing were used for the analysis. The endpoints of the study were progression-free survival (PFS) and overall survival (OS). The VEGF-A rs699947 A/A allele was associated with increased PFS (p = 0.006) and OS (p = 0.043). The ICAM-1 rs1799969 G/A allele was associated with prolonged OS (p = 0.036). Finally, BRAF wild type was associated with increased OS (p = 0.027). We identified VEGF-A and ICAM-1 variants in angiogenesis and other major intracellular signaling pathways, such as BRAF, that can predict clinical outcome upon bevacizumab administration. These identified biomarkers could be used to select patients with mCRC who may achieve long-term responses and benefit from bevacizumab-based therapies

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    No full text
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning
    corecore