49 research outputs found

    Myelodysplastic Syndrome and Histone Deacetylase Inhibitors: “To Be or Not to Be Acetylated”?

    Get PDF
    Myelodysplastic syndrome (MDS) represents a heterogeneous group of diseases with clonal proliferation, bone marrow failure and increasing risk of transformation into an acute myeloid leukaemia. Structured guidelines are developed for selective therapy based on prognostic subgroups, age, and performance status. Although many driving forces of disease phenotype and biology are described, the complete and possibly interacting pathogenetic pathways still remain unclear. Epigenetic investigations of cancer and haematologic diseases like MDS give new insights into the pathogenesis of this complex disease. Modifications of DNA or histones via methylation or acetylation lead to gene silencing and altered physiology relevant for MDS. First clinical trials give evidence that patients with MDS could benefit from epigenetic treatment with, for example, DNA methyl transferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi). Nevertheless, many issues of HDACi remain incompletely understood and pose clinical and translational challenges. In this paper, major aspects of MDS, MDS-associated epigenetics and the potential use of HDACi are discussed

    Differential diagnostic challenge of chronic neutrophilic leukemia in a patient with prolonged leukocytosis

    Get PDF
    Our interesting case deals with the clinical and morphological aspects of a chronic neutrophilic leukemia and the critical evaluation of differential diagnosis of leukemoid reaction in bone marrow biopsies

    phenoPET: A dedicated PET Scanner for Plant Research based on digital SiPMs

    Get PDF
    In the frame of the German Plant Phenotyping Project (DPPN) we developed a novel PET scanner. In contrary to a clinical or preclinical PET scanner the detector rings of the Plant System are oriented in a horizontal plane. The final system will be equipped with three rings covering a Field of View (FOV) of 18 cm diameter and 20 cm axial height. One detector ring is formed by 12 modules. Each module contains four 8×8 pixel digital SiPM devices DPC-3200-22-44 (Philips Digital Photon Counting) connected to a PCB and four scintillator matrices with 16×16 individual LYSO scintillators. Crystal size is 1.85×1.85×10 mm3. The matrices are composed with both reflective and transparent contact faces between the crystals in order to optimize crystal identification. A cooling system keeps the detectors below 5°C and limits the dark count rate. Data are already preprocessed by the Cyclone FPGA (Altera) in the module and transmitted from there at 50MiB/s to the base board. The base board collects the data from all modules and allows coincidence detection performed on a Kintex-7 FPGA (Xilinx). Finally the data link to the computer system for image reconstruction is realized via an USB 3.0 connection. Due to the fast photodetectors the system is dedicated to work with rather high activities. Preliminary measurements showed a coincidence peak of 250 ps FWHM between two detector elements and an energy resolution ΔE/E = 12%. This paper will present first results from a one ring system with a FOV of 18 cm diameter and 6.5 cm axial height
    corecore