80 research outputs found

    Serum Zinc-α2-Glycoprotein Levels Were Decreased in Patients With Premature Coronary Artery Disease

    Get PDF
    Objectives: To explore serum zinc-α2-glycoprotein (ZAG) changes in patients with or without premature coronary artery disease (PCAD) and its association with several cardiovascular risk factors.Methods: A total of 3,364 patients who were undergone coronary angiography in Peking Union Medical College Hospital were screened. According to the degree of coronary artery stenosis, the number of 364 patients with PCAD (age <55 years in males and <65 years in females) and 126 age and gender matched patients without premature coronary artery disease (NPCAD) were recruited in our present study. In addition, 182 age and gender matched healthy controls were also enrolled. Serum ZAG levels were determined by enzyme-linked immunosorbent assay (ELISA) method.Results: Serum ZAG were significantly lower in the PCAD (8.03 ± 1.01 vs. 8.78 ± 1.89 μg/mL, p < 0.05) and NPCAD groups (8.28 ± 1.61 vs. 8.78 ± 1.89 μg/mL, p < 0.05), respectively, when compared with the controls. Multiple regression analysis showed that PCAD was independently associated with serum ZAG levels (B = −0.289, p = 0.002). The probability of PCAD in subjects with low tertile ZAG levels was 2.48-fold higher than those with high tertile levels after adjusting for other confounders [OR = 3.476, 95% CI 1.387–8.711, p = 0.008]. This phenomenon was more likely to be observed in male subjects with BMI <24 kg/m2. The receiver operating curve (ROC) analysis showed a weak diagnostic performance of serum ZAG for PCAD (AUC = 0.659, 95% CI 0.612–0.705, p < 0.05). At the cutoff value of 7.955 μg/mL serum ZAG, the sensitivity and specificity for differentiating patients with PCAD from controls were 50.5 and 78.0%, respectively. The combination of ZAG with other clinical variables including age, gender, BMI, SBP, FBG, TC, HDL-C, Cr, and Urea had significantly improved the diagnosis accuracy with a sensitivity of 82.6%, a specificity of 95.0%, and AUC of 0.957 (95% CI, 0.940–0.975, p < 0.05).Conclusion: Serum ZAG levels were firstly found to be decreased in Chinese PCAD patients. Subjects with lower ZAG levels were more likely to have PCAD, especially for male subjects with BMI <24 kg/m2. ZAG might be the potential diagnostic biomarkers for PCAD patients, and the combination of ZAG and clinical variables had higher discriminative performance

    Serum and Adipose Tissue mRNA Levels of ATF3 and FNDC5/Irisin in Colorectal Cancer Patients With or Without Obesity

    Get PDF
    Objectives: To explore the activating transcription factor 3 (ATF3) and fibronectin type III domain-containing protein 5 (FNDC5)/irisin protein levels in serum and mRNA levels in subcutaneous and visceral white adipose tissue (sWAT and vWAT) in normal-weight (NW) and overweight/obese (OW/OB) patients with colorectal cancer (CRC).Methods: 76 CRC patients and 40 healthy controls were recruited. Serum ATF3 and irisin levels were detected by using ELISA kits, and the mRNA expression levels in sWAT and vWAT were measured by performing RT-qPCR.Results: The serum ATF3 levels were greater by 37.2%, whereas the irisin levels were lower by 23.3% in NW+CRC patients compared with those in healthy controls. CRC was independently associated with both ATF3 and irisin levels. The probability of CRC greater by 22.3-fold in individuals with high ATF3 levels compared with those with low ATF3 levels, whereas the risk of CRC in subjects with high irisin levels was lower by 78.0% compared to the risk in those with low irisin levels after adjustment for age, gender, BMI, and other biochemical parameters. Serum ATF3 and irisin could differentiate CRC patients from controls with receiver operating characteristic (ROC) curve areas of 0.745 (95% CI, 0.655–0.823) and 0.656 (95% CI, 0.561–0.743), respectively. The combination of ATF3 and irisin exhibited improved diagnosis value accuracy with ROC curve areas of 0.796 (95% CI, 0.710–0.866) as well as 72.6% sensitivity and 80.0% specificity.Conclusion: Increased ATF3 and reduced irisin levels were observed in sera from CRC patients. Individuals with high ATF3 and low irisin levels were more likely to have CRC. ATF3 and irisin represent potential diagnostic biomarkers for CRC patients

    Refining Sparse Cell-ID Trajectory of Public Service Vehicles by Spatiotemporal Modelling

    No full text
    Mobile phone data have become a critical data source for transportation research. While a cell-id trajectory was routinely reorganized by International Mobile Subscriber Identity (IMSI), it potentially allows to analyze transportation behaviors and social interaction of total population, with a full temporal coverage at low cost. However, cell-id trajectory is often sparse due to low reporting frequency and uncertainness of mobile holders’ position. So, the cell-id trajectory refinement has been recognized as challenging work to further facilitate trajectory data mining. This paper presents a comprehensive approach to identify cell-id trajectories of public service vehicles (PSVs) from large volume of trajectories and further refines these cell-id trajectories by a heuristic global optimization approach. The modified longest common subsequence (LCSS) method is used to match a cell-id trajectory and a public transportation route (PTR) and correspondingly calculates their similarities for determining whether the trajectory is PSV mode or not. Taking full advantages of the nature of a PSV tends to move on the PTR in uniform motion to meet a prescript visit to stops, a heuristic global optimization approach is deployed to build a spatiotemporal model of a PSV motion, which estimates new locations of cell-id trajectories on the PTR. The approach was finally tested using Beijing cellular network signaling datasets. The precision of PSV trajectory detection is 90%, and the recall is 88%. Evaluated by our GNSS-logged trajectories, the mean absolute error (MAE) of refined PSV trajectories is 144.5 m and the standard deviation (St. Dev) is 81.8 m. It shows a significant improvement in comparison of traditional interpolation methods

    Study on blood oxygen level-dependent magnetic resonance imaging for the assessment of early renal hypoxia in chronic kidney disease

    No full text
    Objective: To evaluate value of blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) for early renal hypoxia assessment in chronic kidney disease(CKD). Methods: Fifty-two patients with CKD and 52 age- and sex-matched health volunteers underwent BOLD MRI of the kidneys. Serum creatinine (sCr) levels and estimated GFR (eGFR) were collected. The patients were classified into 5 stages according to the National Kidney Foundation′s Kidney Disease Outcomes Quality Initiative. Difference in R2*s were compared between patients and volunteers and among different stages of CKD. Results: In patients with CKD and volunteers, R2* of renal medulla was higher than that of renal cortex (P<0.05). Compared with those of volunteers, medulla R2*s in patients with CKD were significantly lower [(16.40 ± 2.47)/s vs (18.17± 2.38)/s, P<0.05]. There were no differences in cortical R2*s among CKD stages and volunteers (P>0.05). However, medullar R2*s were lower in patients with CKD1 [(16.55 ± 2.12)/s], CKD4 [(16.48 ± 2.95)/s], or CKD5 [(13.99 ± 2.21)/s] than those in volunteers [(18.17± 2.38)/s] (P<0.05). Conclusions: BOLD MRI is sensitive to renal medullary hypoxia, and which is helpful for diagnosing early stage of CKD

    Augment BeiDou real-time precise point positioning using ECMWF data

    No full text
    Abstract The Chinese BeiDou Navigation Satellite System has shown potential for precise positioning with a comparable accuracy to that of the Global Positioning System (GPS) at the centimeter level for the horizontal component and the sub-centimeter level for the vertical component. However, a longer convergence time limits the performance of BeiDou precise point positioning (PPP) compared to the GPS PPP solutions. In this study, we applied the tropospheric delay information, derived from the European Centre of Medium-Range Weather Forecasts (ECMWF) analysis and prediction data, into the simulated real-time BeiDou-only and BeiDou/GPS PPP to augment the solutions. Observations from stations in Southeast Asia, which are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiment and Pilot Project (MGEX) network, are processed with different strategies: the standard PPP and the introduced ECMWF-augmented PPP with analysis and prediction data, respectively. The positioning results demonstrate that the ECMWF-augmented BeiDou-only and BeiDou/GPS PPP methods using prediction data perform as well as those using analysis data. In the case of BeiDou-only PPP scenarios, remarkable advancements of 80.6% for the convergence time are achieved by two ECMWF-augmented PPP solutions with respect to the standard PPP method. For the positioning accuracy, the two proposed augmented PPP methods attain 6.6 cm in three-dimensional (3D) accuracy when the standard PPP solution get converged (10 cm), representing a remarkable improvement of 34%. As for the north/east/up component, improvements of 14.7 and 8% for positioning accuracy are obtained for the north and east components, respectively, while a remarkable improvement of 37.3% is achieved for the vertical component. In terms of the BeiDou/GPS PPP solutions, the ECMWF-augmented PPP scenarios attain over 10% improvements in 3D accuracy in all processing session lengths. These improvements totally come from the vertical component, whereas almost no enhancements are obtained in two horizontal components

    Generating synthetic population for simulating the spatiotemporal dynamics of epidemics.

    No full text
    Agent-based models have gained traction in exploring the intricate processes governing the spread of infectious diseases, particularly due to their proficiency in capturing nonlinear interaction dynamics. The fidelity of agent-based models in replicating real-world epidemic scenarios hinges on the accurate portrayal of both population-wide and individual-level interactions. In situations where comprehensive population data are lacking, synthetic populations serve as a vital input to agent-based models, approximating real-world demographic structures. While some current population synthesizers consider the structural relationships among agents from the same household, there remains room for refinement in this domain, which could potentially introduce biases in subsequent disease transmission simulations. In response, this study unveils a novel methodology for generating synthetic populations tailored for infectious disease transmission simulations. By integrating insights from microsample-derived household structures, we employ a heuristic combinatorial optimizer to recalibrate these structures, subsequently yielding synthetic populations that faithfully represent agent structural relationships. Implementing this technique, we successfully generated a spatially-explicit synthetic population encompassing over 17 million agents for Shenzhen, China. The findings affirm the method's efficacy in delineating the inherent statistical structural relationship patterns, aligning well with demographic benchmarks at both city and subzone tiers. Moreover, when assessed against a stochastic agent-based Susceptible-Exposed-Infectious-Recovered model, our results pinpointed that variations in population synthesizers can notably alter epidemic projections, influencing both the peak incidence rate and its onset
    • …
    corecore