16 research outputs found

    Combining Fluorescence and Reflectance to Quantify Dynamics in Photosynthetic Regulation

    No full text

    Diurnal dynamics of non‐photochemical quenching in Arabidopsis npq mutants assessed by solar‐induced fluorescence and reflectance measurements in the field

    No full text
    Solar‐induced fluorescence (SIF) is highly relevant in mapping photosynthesis from remote‐sensing platforms. This requires linking SIF to photosynthesis and understanding the role of nonphotochemical quenching (NPQ) mechanisms under field conditions. Hence, active and passive fluorescence were measured in Arabidopsis with altered NPQ in outdoor conditions. Plants with mutations in either violaxanthin de‐epoxidase (npq1) or PsbS protein (npq4) exhibited reduced NPQ capacity. Parallel measurements of NPQ, photosystem II efficiency, SIF and spectral reflectance (ρ) were conducted diurnally on one sunny summer day and two consecutive days during a simulated cold spell. Results showed that both npq mutants exhibited higher levels of SIF compared to wild‐type plants. Changes in reflectance were related to changes in the violaxanthin–antheraxanthin–zeaxanthin cycle and not to PsbS‐mediated conformational changes. When plants were exposed to cold temperatures, rapid onset of photoinhibition strongly quenched SIF in all lines. Using well‐characterized Arabidopsis npq mutants, we showed for the first time the quantitative link between SIF, photosynthetic efficiency, NPQ components and leaf reflectance. We discuss the functional potential and limitations of SIF and reflectance measurements for estimating photosynthetic efficiency and NPQ in the field

    Elucidating the photosynthetic responses in chlorophyll-deficient soybean (Glycine max, L.) leaf

    No full text
    Chlorophyll (Chl)-deficient plants can potentially increase global surface albedo of mono-cropping systems, and simultaneously maintain a similar photosynthetic efficiency by increasing light canopy penetration and thus lowering investment in pigments. However, some previous studies have shown that pale mutants might reduce productivity in field conditions. Such lower yields were suspected to be due to loss of photosynthetic efficiency at leaf level during light fluctuations as a consequence of reduced capacity and slower relaxation of non-photochemical quenching (NPQ) of Chl fluorescence. In this paper, we tested this hypothesis by comparing, CO2 assimilation (A), photosystem II (PSII) efficiency (ΊPSII), photochemical quenching and NPQ, electron transport rate (ETR) and fluorescence yield (Fyield) in a green soybean (Glycine max L.) cultivar (Eiko) and in a Chl-deficient (MinnGold) mutant under dynamically fluctuating light conditions. MinnGold had significantly slower induction of ETR and lower A and ETR than Eiko, but there was little difference in ΊPSII between the two genotypes, suggesting that the lower photosynthesis of MinnGold was mainly due to lower light energy absorption by a Chl-deficient leaf. The NPQ capacity was also smaller in MinnGold than in Eiko. As for the kinetics of the rapidly inducible component of NPQ, MinnGold showed slower induction, not relaxation, than Eiko. The combination of the effect of Chl-deficiency on lower photosynthesis, NPQ capacity and slower NPQ induction may explain the lower biomass accumulation of MinnGold in the field. Our physiological observations, combined with fluorescence kinetics, can serve as a basis to parameterize Chl content in modelling radiative transfer and photosynthesis for upscaling measures of plant and ecosystem productivity by a big leaf model

    Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq

    No full text
    Solar‐induced fluorescence (SIF) is highly relevant in mapping photosynthesis from remote‐sensing platforms. This requires linking SIF to photosynthesis and understanding the role of nonphotochemical quenching (NPQ) mechanisms under field conditions. Hence, active and passive fluorescence were measured in Arabidopsis with altered NPQ in outdoor conditions. Plants with mutations in either violaxanthin de‐epoxidase (npq1) or PsbS protein (npq4) exhibited reduced NPQ capacity. Parallel measurements of NPQ, photosystem II efficiency, SIF and spectral reflectance (ρ) were conducted diurnally on one sunny summer day and two consecutive days during a simulated cold spell. Results showed that both npq mutants exhibited higher levels of SIF compared to wild‐type plants. Changes in reflectance were related to changes in the violaxanthin–antheraxanthin–zeaxanthin cycle and not to PsbS‐mediated conformational changes. When plants were exposed to cold temperatures, rapid onset of photoinhibition strongly quenched SIF in all lines. Using well‐characterized Arabidopsis npq mutants, we showed for the first time the quantitative link between SIF, photosynthetic efficiency, NPQ components and leaf reflectance. We discuss the functional potential and limitations of SIF and reflectance measurements for estimating photosynthetic efficiency and NPQ in the field

    HyScreen: A Ground-Based Imaging System for High-Resolution Red and Far-Red Solar-Induced Chlorophyll Fluorescence

    No full text
    Solar-induced chlorophyll fluorescence (SIF) is used as a proxy of photosynthetic efficiency. However, interpreting top-of-canopy (TOC) SIF in relation to photosynthesis remains challenging due to the distortion introduced by the canopy’s structural effects (i.e., fluorescence re-absorption, sunlit-shaded leaves, etc.) and sun–canopy–sensor geometry (i.e., direct radiation infilling). Therefore, ground-based, high-spatial-resolution data sets are needed to characterize the described effects and to be able to downscale TOC SIF to the leafs where the photosynthetic processes are taking place. We herein introduce HyScreen, a ground-based push-broom hyperspectral imaging system designed to measure red ([Formula: see text]) and far-red ([Formula: see text]) SIF and vegetation indices from TOC with single-leaf spatial resolution. This paper presents measurement protocols, the data processing chain and a case study of SIF retrieval. Raw data from two imaging sensors were processed to top-of-canopy radiance by dark-current correction, radiometric calibration, and empirical line correction. In the next step, the improved Fraunhofer line descrimination (iFLD) and spectral-fitting method (SFM) were used for SIF retrieval, and vegetation indices were calculated. With the developed protocol and data processing chain, we estimated a signal-to-noise ratio (SNR) between 50 and 200 from reference panels with reflectance from 5% to 95% and noise equivalent radiance (NER) of 0.04 (5%) to 0.18 (95%) mW m [Formula: see text] sr [Formula: see text] nm [Formula: see text]. The results from the case study showed that non-vegetation targets had SIF values close to 0 mW m [Formula: see text] sr [Formula: see text] nm [Formula: see text] , whereas vegetation targets had a mean [Formula: see text] of 1.13 and [Formula: see text] of 1.96 mW m [Formula: see text] sr [Formula: see text] nm [Formula: see text] from the SFM method. HyScreen showed good performance for SIF retrievals at both [Formula: see text] and [Formula: see text]; nevertheless, we recommend further adaptations to correct for the effects of noise, varying illumination and sensor optics. In conclusion, due to its high spatial resolution, Hyscreen is a promising tool for investigating the relationship between leafs and TOC SIF as well as their relationship with plants’ photosynthetic capacity

    High-Throughput chlorophyll fluorescence screening of Setaria viridis for mutants with altered CO2 compensation points

    No full text
    To assist with efforts to engineer a C4 photosynthetic pathway into rice, forward-genetic approaches are being used to identify the genes modulating key C4 traits. Currently, a major challenge is how to screen for a variety of different traits in a high-throughput manner. Here we describe a method for identifying C4 mutant plants with increased CO2 compensation points. This is used as a signature for decreased photosynthetic efficiency associated with a loss of C4 function. By exposing plants to a CO2 concentration close to the CO2 compensation point of a wild-type plant, individuals can be identified from measurements of chlorophyll a fluorescence. We use this method to screen a mutant population of the C4 monocot Setaria viridis (L.) P.Beauv. generated using N-nitroso-N-methylurea (NMU). Mutants were identified at a frequency of 1 per 157 lines screened. Forty-six candidate lines were identified and one line with a heritable homozygous phenotype selected for further characterisation. The CO2 compensation point of this mutant was increased to a value similar to that of C3 rice. Photosynthesis and growth was significantly reduced under ambient conditions. These data indicate that the screen was capable of identifying mutants with decreased photosynthetic efficiency. Characterisation and next-generation sequencing of all the mutants identified in this screen may lead to the discovery of novel genes underpinning C4 photosynthesis. These can be used to engineer a C4 photosynthetic pathway into rice.This work was supported by the International Rice Research Institute, Bill and Melinda Gates Foundation, Department for International Development (DFID) U.K and the ARC Centre of Excellence in Translational Photosynthesis in Australia

    Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection

    No full text
    Hyperspectral imaging sensors are promising tools for monitoring crop plants or vegetation in different environments. Information on physiology, architecture or biochemistry of plants can be assessed non-invasively and on different scales. For instance, hyperspectral sensors are implemented for stress detection in plant phenotyping processes or in precision agriculture. Up to date, a variety of non-imaging and imaging hyperspectral sensors is available. The measuring process and the handling of most of these sensors is rather complex. Thus, during the last years the demand for sensors with easy user operability arose. The present study introduces the novel hyperspectral camera Specim IQ from Specim (Oulu, Finland). The Specim IQ is a handheld push broom system with integrated operating system and controls. Basic data handling and data analysis processes, such as pre-processing and classification routines are implemented within the camera software. This study provides an introduction into the measurement pipeline of the Specim IQ as well as a radiometric performance comparison with a well-established hyperspectral imager. Case studies for the detection of powdery mildew on barley at the canopy scale and the spectral characterization of Arabidopsis thaliana mutants grown under stressed and non-stressed conditions are presente
    corecore