8 research outputs found

    Integrating Herbicides in a High-Residue Cover Crop Setting

    Get PDF

    Peanut Performance and Weed Management in a High-residue Cover Crop System

    Get PDF
    Previous research has indicated that conservation tillage is a viable option for successful peanut production; however, interactions between cover crop residues and peanut growth are not fully understood. Additional information is needed about the effects of varying levels of cover crop biomass on peanut growth and development. Level of cover crop residue may also affect the preemergence herbicide activity through interception and efficacy of weed suppression. The objectives of this peanut research were to determine if varying amounts of cover crop biomass would affect peanut growth, herbicide interception, or weed control. This research also aimed to determine if cover crop management practices (rolling or standing cover) would affect herbicide interception rates. The study consisted of a rye (Secale cereale L.) cover crop planted at three different dates as well as a fallow treatment at two locations: Dawson, GA, and Headland, AL. Pendimethalin was applied PRE at 1 kg ai/ha across the entire area just prior to planting of the Georgia 03-L peanut variety. Soil samples were collected at three different dates after planting for high-pressure liquid chromatography (HPLC) analysis to determine pendimethalin levels. Peanut yields differed only between location regardless of cover crop residue level with the Headland, Alabama, site averaging 4,272 kg/ha and the Dawson, Georgia, site averaging 2,247 kg/ha. Pendimethalin extraction from soil samples indicated no difference in herbicide recovery between winter fallow systems compared to treatments with cover crops. Weed control ratings taken at 21 and 45 days after planting (DAP) showed greater weed suppression for cover crop systems for an extended period of time when higher levels of cover crop biomass are present. Results of this experiment indicate the inclusion of cover crops in a conservation-tilled peanut system can be a successful alternative to winter fallow systems without reducing peanut yield or herbicide efficacy

    Evaluation of Herbicide Efficacy, Injury, and Yield in White Lupin (Lupinus albus L.)

    Get PDF
    White lupin is of increasing interest in the southeastern United States (US) as a winter legume cover crop or as mid-winter forage for ruminants. White lupins are poor weed competitors during early establishment, making effective weed control necessary; however, only three herbicides are currently registered for use in lupin. An experiment was conducted at two Alabama sites in 2007 and 2008 to evaluate herbicide efficacy provided by ten preemergence (PRE) and nine postemergence (POST) herbicides as well as lupin injury and yield. Overall, PRE applied herbicides, particularly imazethapyr, linuron, and flumioxazin, caused less crop injury than POST herbicides while providing ≥ 86% control of annual bluegrass, corn spurry, heartwing sorrel, henbit, and lesser swinecress six weeks after application. Grass-active herbicides, fluazifop and sethoxydim, provided greater than 95% of annual bluegrass control without causing unrecoverable lupin damage. Imazethapyr applied POST controlled shepherd’s purse (96% to 98%), cutleaf evening-primrose (81% to 96%), and wild radish (71% to 99%) without lupin injury. POST-directed spray applications of glyphosate and flumioxazin provided good weed control of corn spurry (80% to 98%) and winter vetch (71% to 95%) but caused significant crop injury due to drift. In general, grain yields were only reduced with the use of chlorimuron, diclosulam, glyphosate, and thifensulfuron. This research suggests there are several herbicides not currently registered that could be beneficial for use in US lupin production

    Organic Weed Control and Cover Crop Residue Integration Impacts on Weed Control, Quality, Yield and Economics in Conservation Tillage Tomato-A Case Study

    Get PDF
    The increased adoption of conservation tillage and organic weed control practices in vegetable production requires more information on the role of various cover crops in integrated weed control, tomato quality, and yield. Two conservation-tillage systems utilizing crimson clover and cereal rye as winter cover crops were compared to a conventional black polythene mulch system, with or without organic weed management options, for weed control, tomato yield, and profitability. All cover crops were terminated with a mechanical roller/crimper prior to planting. Organic weed control treatments included: 1) flaming utilizing a one burner hand torch, 2) PRE application of corn gluten, 3) PRE application of corn gluten followed by flaming, or 4) intermittent hand weeding as needed. A non-treated control and a standard herbicide program were included for comparison. The herbicide program consisting of a PRE application of S-metolachlor (1.87 kg a.i./ha) followed by an early POST metribuzin (0.56 kg a.i. /ha) application followed by a late POST application of clethodim (0.28 kg a.i./ha). In general, high-residue clover and cereal rye cover crops provided substantial suppression of Palmer amaranth, large crabgrass, and yellow nutsedge. Across systems, minimum input in high-residue systems provided the highest net returns above variable costs compared to organic herbicide treatments that are costly and provide marginal benefit

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore