79 research outputs found

    Drosophila Kelch regulates actin organization via Src64-dependent tyrosine phosphorylation

    Get PDF
    The Drosophila kelch gene encodes a member of a protein superfamily defined by the presence of kelch repeats. In Drosophila, Kelch is required to maintain actin organization in ovarian ring canals. We set out to study the actin cross-linking activity of Kelch and how Kelch function is regulated. Biochemical studies using purified, recombinant Kelch protein showed that full-length Kelch bundles actin filaments, and kelch repeat 5 contains the actin binding site. Two-dimensional electrophoresis demonstrated that Kelch is tyrosine phosphorylated in a src64-dependent pathway. Site-directed mutagenesis determined that tyrosine residue 627 is phosphorylated. A Kelch mutant with tyrosine 627 changed to alanine (KelY627A) rescued the actin disorganization phenotype of kelch mutant ring canals, but failed to produce wild-type ring canals. Electron microscopy demonstrated that phosphorylation of Kelch is critical for the proper morphogenesis of actin during ring canal growth, and presence of the nonphosphorylatable KelY627A protein phenocopied src64 ring canals. KelY627A protein in ring canals also dramatically reduced the rate of actin monomer exchange. The phenotypes caused by src64 mutants and KelY627A expression suggest that a major function of Src64 signaling in the ring canal is the negative regulation of actin cross-linking by Kelch

    Muscular collision chess:A qualitative exploration of the role and development of cognition, understanding and knowledge in elite-level decision making

    Get PDF
    Decision making (DM) is a crucial part of team invasion games. The role of context and how this drives both the initial DM and primes in-action planning and execution, termed contextual priors, has been investigated. Findings suggest a significant role for cognition, which appears to run contrary to some of the suggestions made by an ecological dynamics approach. Wishing to clarify this situation for coaches and psychologists, this research explores the experience of nine top-tier key decision makers in rugby union, using an interview approach. Results showed a wide range of context-based information considered by players during the DM process. Furthermore, this information acted to prime subsequent attention and in-action thinking. Finally, this research sought to understand if, and therefore how, DM could be taught, developed and primed by players and coaches. Our data are supportive of a more cognitively focused approach to developing DM although our data do not dismiss a role for direct perception in optimising performance. Implications for practice are discussed

    Interplay between Exonic Splicing Enhancers, mRNA Processing, and mRNA Surveillance in the Dystrophic Mdx Mouse

    Get PDF
    BACKGROUND: Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. METHODOLOGY/PRINCIPAL FINDING: Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. CONCLUSIONS/SIGNIFICANCE: Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites

    Immune response of healthy horses to DNA constructs formulated with a cationic lipid transfection reagent

    Get PDF
    Background Deoxyribonucleic acid (DNA) vaccines are used for experimental immunotherapy of equine melanoma. The injection of complexed linear DNA encoding interleukin (IL)-12/IL-18 induced partial tumour remission in a clinical study including 27 grey horses. To date, the detailed mechanism of the anti-tumour effect of this treatment is unknown. Results In the present study, the clinical and cellular responses of 24 healthy horses were monitored over 72 h after simultaneous intradermal and intramuscular application of equine IL-12/IL-18 DNA (complexed with a transfection reagent) or comparative substances (transfection reagent only, nonsense DNA, nonsense DNA depleted of CG). Although the strongest effect was observed in horses treated with expressing DNA, horses in all groups treated with DNA showed systemic responses. In these horses treated with DNA, rectal temperatures were elevated after treatment and serum amyloid A increased. Total leukocyte and neutrophil counts increased, while lymphocyte numbers decreased. The secretion of tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) from peripheral mononuclear blood cells ex vivo increased after treatments with DNA, while IL-10 secretion decreased. Horses treated with DNA had significantly higher myeloid cell numbers and chemokine (C-X-C motif) ligand (CXCL)-10 expression in skin samples at the intradermal injection sites compared to horses treated with transfection reagent only, suggesting an inflammatory response to DNA treatment. In horses treated with expressing DNA, however, local CXCL-10 expression was highest and immunohistochemistry revealed more intradermal IL-12-positive cells when compared to the other treatment groups. In contrast to non-grey horses, grey horses showed fewer effects of DNA treatments on blood lymphocyte counts, TNFα secretion and myeloid cell infiltration in the dermis. Conclusion Treatment with complexed linear DNA constructs induced an inflammatory response independent of the coding sequence and of CG motif content. Expressing IL-12/IL-18 DNA locally induces expression of the downstream mediator CXCL-10. The grey horses included appeared to display an attenuated immune response to DNA treatment, although grey horses bearing melanoma responded to this treatment with moderate tumour remission in a preceding study. Whether the different immunological reactivity compared to other horses may contributes to the melanoma susceptibility of grey horses remains to be elucidated

    Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster

    No full text
    Flytrap is a web-enabled relational database of transposable element insertions in Drosophila melanogaster. A green fluorescent protein (GFP) artificial exon carried by a transposable P-element is mobilized and inserted into a host gene intron creating a GFP fusion protein. The sequence of the tagged gene is determined by sequencing inverse-PCR products derived from genomic DNA. Flytrap contains two principle data types: micrographs of protein localization and a cellular component ontology, based on rules derived from the Gene Ontology consortium (http://www.geneontology.org), describing protein localization. Flytrap also has links to gene information contained in Flybase (http://flybase.bio.indiana.edu). The system is designed to accept submissions of micrographs and descriptions from any type of tissue (e.g. wing imaginal disk, ovary) and at any stage of development. Insertion lines can be searched using a number of queries, including Berkeley Drosophila Genome Project (BDGP) numbers and protein localization. In addition, Flytrap provides online order forms linked to each insertion line so that users may request any line generated from this project. Flytrap may be accessed from the homepage at http://flytrap.med.yale.edu
    • …
    corecore