38 research outputs found

    Author Correction: Mitonuclear incompatibility as a hidden driver behind the genome ancestry of African admixed cattle

    Get PDF
    The original article contained minor errors in Figs. 1 and 3 which have both since been corrected

    Comprehensive identification of sexually dimorphic genes in diverse cattle tissues using RNA-seq

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Molecular mechanisms associated with sexual dimorphism in cattle have not been well elucidated. Furthermore, as recent studies have implied that gene expression patterns are highly tissue specific, it is essential to investigate gene expression in a variety of tissues using RNA-seq. Here, we employed and compared two statistical methods, a simple two group test and Analysis of deviance (ANODEV), in order to investigate bovine sexually dimorphic genes in 40 RNA-seq samples distributed across two factors: sex and tissue. Results As a result, we detected 752 sexually dimorphic genes across tissues from two statistical approaches and identified strong tissue-specific patterns of gene expression. Additionally, significantly detected sex-related genes shared between two mammal species (cattle and rat) were identified using qRT-PCR. Conclusions Results of our analyses reveal that sexual dimorphism of metabolic tissues and pituitary gland in cattle involves various biological processes. Several differentially expressed genes between sexes in cattle and rat species are shared, but show tissue-specific patterns. Finally, we concluded that two distinct statistical approaches have their advantages and disadvantages in RNA-seq studies investigating multiple tissues

    Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef

    Get PDF
    BACKGROUND: Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds. Here, we identified meat quality related gene regions that are positively selected in Ankole (Sanga) cattle breeds as compared to indicus (Boran, Ogaden, and Kenana) breeds using cross-population (XP-EHH and XP-CLR) statistical methods. RESULTS: We identified 238 (XP-EHH) and 213 (XP-CLR) positively selected genes, of which 97 were detected from both statistics. Among the genes obtained, we primarily reported those involved in different biological process and pathways associated with meat quality traits. Genes (CAPZB, COL9A2, PDGFRA, MAP3K5, ZNF410, and PKM2) involved in muscle structure and metabolism affect meat tenderness. Genes (PLA2G2A, PARK2, ZNF410, MAP2K3, PLCD3, PLCD1, and ROCK1) related to intramuscular fat (IMF) are involved in adipose metabolism and adipogenesis. MB and SLC48A1 affect meat color. In addition, we identified genes (TIMP2, PKM2, PRKG1, MAP3K5, and ATP8A1) related to feeding efficiency. Among the enriched Gene Ontology Biological Process (GO BP) terms, actin cytoskeleton organization, actin filament-based process, and protein ubiquitination are associated with meat tenderness whereas cellular component organization, negative regulation of actin filament depolymerization and negative regulation of protein complex disassembly are involved in adipocyte regulation. The MAPK pathway is responsible for cell proliferation and plays an important role in hyperplastic growth, which has a positive effect on meat tenderness. CONCLUSION: Results revealed several candidate genes positively selected in Ankole cattle in relation to meat quality characteristics. The genes identified are involved in muscle structure and metabolism, and adipose metabolism and adipogenesis. These genes help in the understanding of the biological mechanisms controlling beef quality characteristics in African Ankole cattle. These results provide a basis for further research on the genomic characteristics of Ankole and other Sanga cattle breeds for quality beef. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-016-0467-1) contains supplementary material, which is available to authorized users

    Origin and spread of Thoroughbred racehorses inferred from complete mitochondrial genome sequences: Phylogenomic and Bayesian coalescent perspectives.

    No full text
    The Thoroughbred horse breed was developed primarily for racing, and has a significant contribution to the qualitative improvement of many other horse breeds. Despite the importance of Thoroughbred racehorses in historical, cultural, and economical viewpoints, there was no temporal and spatial dynamics of them using the mitogenome sequences. To explore this topic, the complete mitochondrial genome sequences of 14 Thoroughbreds and two Przewalski's horses were determined. These sequences were analyzed together along with 151 previously published horse mitochondrial genomes from a range of breeds across the globe using a Bayesian coalescent approach as well as Bayesian inference and maximum likelihood methods. The racing horses were revealed to have multiple maternal origins and to be closely related to horses from one Asian, two Middle Eastern, and five European breeds. Thoroughbred horse breed was not directly related to the Przewalski's horse which has been regarded as the closest taxon to the all domestic horses and the only true wild horse species left in the world. Our phylogenomic analyses also supported that there was no apparent correlation between geographic origin or breed and the evolution of global horses. The most recent common ancestor of the Thoroughbreds lived approximately 8,100-111,500 years ago, which was significantly younger than the most recent common ancestor of modern horses (0.7286 My). Bayesian skyline plot revealed that the population expansion of modern horses, including Thoroughbreds, occurred approximately 5,500-11,000 years ago, which coincide with the start of domestication. This is the first phylogenomic study on the Thoroughbred racehorse in association with its spatio-temporal dynamics. The database and genetic history information of Thoroughbred mitogenomes obtained from the present study provide useful information for future horse improvement projects, as well as for the study of horse genomics, conservation, and in association with its geographical distribution

    Genome sequencing and protein domain annotations of Korean Hanwoo cattle identify Hanwoo-specific immunity-related and other novel genes

    Get PDF
    Abstract Background Identification of genetic mechanisms and idiosyncrasies at the breed-level can provide valuable information for potential use in evolutionary studies, medical applications, and breeding of selective traits. Here, we analyzed genomic data collected from 136 Korean Native cattle, known as Hanwoo, using advanced statistical methods. Results Results revealed Hanwoo-specific protein domains which were largely characterized by immunoglobulin function. Furthermore, domain interactions of novel Hanwoo-specific genes reveal additional links to immunity. Novel Hanwoo-specific genes linked to muscle and other functions were identified, including protein domains with functions related to energy, fat storage, and muscle function that may provide insight into the mechanisms behind Hanwoo cattle’s uniquely high percentage of intramuscular fat and fat marbling. Conclusion The identification of Hanwoo-specific genes linked to immunity are potentially useful for future medical research and selective breeding. The significant genomic variations identified here can crucially identify genetic novelties that are arising from useful adaptations. These results will allow future researchers to compare and classify breeds, identify important genetic markers, and develop breeding strategies to further improve significant traits

    Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds

    No full text
    Selective sweep can cause genetic differentiation across populations, which allows for the identification of possible causative regions/genes underlying important traits. The pig has experienced a long history of allele frequency changes through artificial selection in the domestication process. We obtained an average of 329,482,871 sequence reads for 24 pigs from three pig breeds: Yorkshire (n = 5), Landrace (n = 13), and Duroc (n = 6). An average read depth of 11.7 was obtained using whole-genome resequencing on an Illumina HiSeq2000 platform. In this study, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio tests were implemented to detect genes experiencing positive selection for the genome-wide resequencing data generated from three commercial pig breeds. In our results, 26, 7, and 14 genes from Yorkshire, Landrace, and Duroc, respectively were detected by two kinds of statistical tests. Significant evidence for positive selection was identified on genes ST6GALNAC2 and EPHX1 in Yorkshire, PARK2 in Landrace, and BMP6, SLA-DQA1, and PRKG1 in Duroc.These genes are reportedly relevant to lactation, reproduction, meat quality, and growth traits. To understand how these single nucleotide polymorphisms (SNPs) related positive selection affect protein function, we analyzed the effect of non-synonymous SNPs. Three SNPs (rs324509622, rs80931851, and rs80937718) in the SLA-DQA1 gene were significant in the enrichment tests, indicating strong evidence for positive selection in Duroc. Our analyses identified genes under positive selection for lactation, reproduction, and meat-quality and growth traits in Yorkshire, Landrace, and Duroc, respectively

    Characterizing Milk Production Related Genes in Holstein Using RNA-seq

    No full text
    Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production

    Bayesian maximum clade credibility phylogenetic tree based on the whole genome sequences of 37 CSFVs.

    No full text
    <p>With the BI and ML methods, identical topology was produced. Divergence times (in years) are positioned below the nodes; the 95% HPD intervals are indicated in brackets. The confidence of the phylogenetic analysis is presented above the nodes: left numbers represent Bayesian posterior probabilities (≥ 0.80) and right ones represent ML bootstrap values (≥ 60%). Subgenotypes and groups are indicated above the corresponding nodes using squares and circles.</p

    Time-Calibrated Phylogenomics of the Classical Swine Fever Viruses: Genome-Wide Bayesian Coalescent Approach

    No full text
    <div><p>The phylogeny of classical swine fever virus (CSFV), the causative agent of classical swine fever (CSF), has been investigated extensively. However, no evolutionary research has been performed using the whole CSFV genome. In this study, we used 37 published genome sequences to investigate the time-calibrated phylogenomics of CSFV. In phylogenomic trees based on Bayesian inference (BI) and Maximum likelihood (ML), the 37 isolates were categorized into five genetic types (1.1, 1.2, 2.1, 2.3, and 3.4). Subgenotype 1.1 is divided into 3 groups and 1 unclassified isolate, 2.1 into 4 groups, 2.3 into 2 groups and 1 unclassified isolate, and subgenotype 1.2 and 3.4 consisted of one isolate each. We did not observe an apparent temporal or geographical relationship between isolates. Of the 14 genomic regions, NS4B showed the most powerful phylogenetic signal. Results of this evolutionary study using Bayesian coalescent approach indicate that CSFV has evolved at a rate of 13×.010<sup>-4</sup> substitutions per site per year. The most recent common ancestor of CSFV appeared 2770.2 years ago, which was about 8000 years after pig domestication. The effective population size of CSFV underwent a slow increase until the 1950s, after which it has remained constant.</p></div
    corecore