4 research outputs found

    Antigen-Specific versus Non-Antigen-Specific Immunoadsorption in ABO-Incompatible Renal Transplantation

    Full text link
    Introduction: ABO-incompatible (ABOi) renal transplantation (RTx) from living donors is an established procedure to expand the donor pool for patients with end stage renal disease. Immunoadsorption (IA) is a standard procedure for the removal of preformed antibodies against the allograft. In this study, antigen-specific and non-antigen-specific IA in ABOi RTx were compared. Patients and Methods: 10 patients underwent antigen-specific IA (Glycosorb group) and 13 patients non-antigen-specific IA (Immunosorba group). The effects of both procedures regarding antibody reduction, number of treatments, complications, costs, as well as the allograft function and patient survival were compared between both groups. Results: Although the IgG levels were reduced equally by both procedures (p=0.82), the reduction of the IgM level was more effective in the Glycosorb group (p=0.0172). Patients in both groups required a median number of 6 IA before ABOi RTx. Allograft function at one year after AB0i RTx was similar in both groups (estimated glomerular filtration rate: 66 vs. 64 ml/min/1.73m² respectively), with a death-censored graft survival of 90.0% and 92.3% respectively. Complication rates did not differ between procedures. Due to the reuse of non-antigen-specific Immunosorba columns, costs were considerably lower in this group; however, the use of the Immunosorba-based IA was less time-efficient. Conclusion: Considering upcoming alternatives as simultaneous performance of dialysis and IA or a possible reuse of Glycosorb columns, this might become less relevant in the future

    Unacceptable human leucocyte antigens for organ offers in the era of organ shortage: influence on waiting time before kidney transplantation

    No full text
    Background. The assignment of human leucocyte antigens (HLAs) against which antibodies are detected as unacceptable antigens (UAGs) avoids allocation of HLA-incompatible allografts. There is uncertainty as to what extent UAGs decrease the probability of receiving a kidney offer. Methods. Kidney transplantations in 3264 patients on the waiting lists of six German transplant centres were evaluated for a period of at least 2 years. The proportion of excluded offers due to UAGs was calculated as virtual panel-reactive antibodies (vPRAs). Results. In the common Eurotransplant Kidney Allocation Scheme, the transplant probability was unaffected by vPRAs in exploratory univariate analyses. In the multivariable model, a 1% increase in vPRA values was outweighed by an additional waiting time of 2.5 weeks. The model was confirmed using an external validation cohort of 1521 patients from seven centres. If only patients with standard risk were considered (e.g. no simultaneous transplantation of other organs), only 1.3 weeks additional waiting time was needed. In the Eurotransplant Senior Program, patients with vPRA values >50% had a strongly reduced transplant probability in the unadjusted analyses. In the multivariable model, a 1% increase in vPRA values was outweighed by an additional waiting time of 5 weeks. Conclusions: This study demonstrates that the assignment of UAGs decreases the transplant probability in both main Eurotransplant allocation programs because of insufficient compensatory mechanisms. At present, for immunized patients, a prolonged waiting time has to be weighed against the increased immunologic risk due to donor-specific antibodies not assigned as UAGs
    corecore