24 research outputs found

    Research update:alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer's disease

    Get PDF
    Aberrant amyloid-ß peptide (Aß) accumulation along with altered expression and function of nicotinic acetylcholine receptors (nAChRs) stand prominently in the etiology of Alzheimer's disease (AD). Since the discovery that Aß is bound to a7 nAChRs under many experimental settings, including post-mortem AD brain, much effort has been expended to understand the implications of this interaction in the disease milieu. This research update will review the current literature on the a7 nAChR-Aß interaction in vitro and in vivo, the functional consequences of this interaction from sub-cellular to cognitive levels, and discuss the implications these relationships might have for AD therapies

    Divergent Mechanisms for PPARγ Agonism in Ameliorating Aging-Related Versus Cranial Irradiation-Induced Context Discrimination Deficits

    Get PDF
    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors in a process termed neurogenesis. Adult neurogenesis is limited to specific brain regions in the mammalian brain, such as the subgranular zone (SGZ) of the hippocampus. Alterations in adult neurogenesis appear to be a common hallmark in different neurodegenerative diseases including Alzheimer’s disease (AD). We and others have shown that PPARγ agonism improves cognition in preclinical models of AD as well as in several pilot clinical trials. Context discrimination is recognized as a cognitive task supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus that we and others have previously shown declines with age. We therefore postulated that PPARγ agonism would positively impact context discrimination in middle-aged mice via mechanisms that influence proliferation and differentiation of adult-born neurons arising from the SGZ. To achieve our objective, 8-months old mice were left untreated or treated with the FDA-approved PPARγ agonist, rosiglitazone then tested for context discrimination learning and memory, followed by immunofluorescence evaluation of hippocampal SGZ cell proliferation and neuron survival. We found that PPARγ agonism enhanced context discrimination performance in middle-aged mice concomitant with stimulated SGZ cell proliferation, but not new neuron survival. Focal cranial irradiation that destroys neurogenesis severely compromised context discrimination in middle-aged mice yet rosiglitazone treatment significantly improved cognitive performance through an anti-inflammatory mechanism and resurrection of the neurogenic niche. Thus, we have evidence for divergent mechanisms by which PPARγ agonism impinges upon aging-related versus cranial irradiation-induced deficits in context discrimination learning and memory

    TC83 Sequelae

    Get PDF
    Long-term neurological complications, termed sequelae, can result from viral encephalitis, which are not well understood. In human survivors, alphavirus encephalitis can cause severe neurobehavioral changes, in the most extreme cases, a schizophrenic-like syndrome. In the present study, we aimed to adapt an animal model of alphavirus infection survival to study the development of these long-term neurological complications. Upon low-dose infection of wild-type C57B/6 mice, asymptomatic and symptomatic groups were established and compared to mock-infected mice to measure general health and baseline neurological function, including the acoustic startle response and prepulse inhibition paradigm. Prepulse inhibition is a robust operational measure of sensorimotor gating, a fundamental form of information processing. Deficits in prepulse inhibition manifest as the inability to filter out extraneous sensory stimuli. Sensory gating is disrupted in schizophrenia and other mental disorders, as well as neurodegenerative diseases. Symptomatic mice developed deficits in prepulse inhibition that lasted through 6 months post infection; these deficits were absent in asymptomatic or mock-infected groups. Accompanying prepulse inhibition deficits, symptomatic animals exhibited thalamus damage as visualized with H&E staining, as well as increased GFAP expression in the posterior complex of the thalamus and dentate gyrus of the hippocampus. These histological changes and increased GFAP expression were absent in the asymptomatic and mock-infected animals, indicating that glial scarring could have contributed to the prepulse inhibition phenotype observed in the symptomatic animals. This model provides a tool to test mechanisms of and treatments for the neurological sequelae of viral encephalitis and begins to delineate potential explanations for the development of such sequelae post infection

    Heightened cocaine-seeking in male rats associates with a distinct transcriptomic profile in the medial prefrontal cortex

    Get PDF
    Drug overdose deaths involving cocaine have skyrocketed, an outcome attributable in part to the lack of FDA-approved medications for the treatment of cocaine use disorder (CUD), highlighting the need to identify new pharmacotherapeutic targets. Vulnerability to cocaine-associated environmental contexts and stimuli serves as a risk factor for relapse in CUD recovery, with individual differences evident in the motivational aspects of these cues. The medial prefrontal cortex (mPFC) provides top-down control of striatal circuitry to regulate the incentive-motivational properties of cocaine-associated stimuli. Clinical and preclinical studies have identified genetic variations that impact the degree of executive restraint over drug-motivated behaviors, and we designed the present study to employ next-generation sequencing to identify specific genes associated with heightened cue-evoked cocaine-seeking in the mPFC of male, outbred rats. Rats were trained to stably self-administer cocaine, and baseline cue-reinforced cocaine-seeking was established. Rats were phenotyped as either high cue (HC) or low cue (LC) responders based upon lever pressing for previously associated cocaine cues and allowed 10 days of abstinence in their home cages prior to mPFC collection for RNA-sequencing. The expression of 309 genes in the mPFC was significantly different in HC vs. LC rats. Functional gene enrichment analyses identified ten biological processes that were overrepresented in the mPFC of HC vs. LC rats. The present study identifies distinctions in mPFC mRNA transcripts that characterizes individual differences in relapse-like behavior and provides prioritized candidates for future pharmacotherapeutics aimed to help maintain abstinence in CUD. In particular the Htr2c gene, which encodes the serotonin 5-HT2C receptor (5-HT2CR), is expressed to a lower extent in HC rats, relative to LC rats. These findings build on a plethora of previous studies that also point to the 5-HT2CR as an attractive target for the treatment of CUD

    VEEV TC-83 Triggers Dysregulation of the Tryptophan–Kynurenine Pathway in the Central Nervous System That Correlates with Cognitive Impairment in Tg2576 Mice

    No full text
    Neurodegenerative diseases are chronic conditions affecting the central nervous system (CNS). Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid beta in the limbic and cortical brain regions. AD is presumed to result from genetic abnormalities or environmental factors, including viral infections, which may have deleterious, long-term effects. In this study, we demonstrate that the Venezuelan equine encephalitis virus (VEEV) commonly induces neurodegeneration and long-term neurological or cognitive sequelae. Notably, the effects of VEEV infection can persistently influence gene expression in the mouse brain, suggesting a potential link between the observed neurodegenerative outcomes and long-term alterations in gene expression. Additionally, we show that alphavirus encephalitis exacerbates the neuropathological profile of AD through crosstalk between inflammatory and kynurenine pathways, generating a range of metabolites with potent effects. Using a mouse model for β-amyloidosis, Tg2576 mice, we found that cognitive deficits and brain pathology were more severe in Tg2576 mice infected with VEEV TC-83 compared to mock-infected controls. Thus, during immune activation, the kynurenine pathway plays a more active role in the VEEV TC-83-infected cells, leading to increases in the abundance of transcripts related to the kynurenine pathway of tryptophan metabolism. This pathway generates several metabolites with potent effects on neurotransmitter systems as well as on inflammation, as observed in VEEV TC-83-infected animals
    corecore