38,868 research outputs found
Ground-based facilities for evaluating vortex minimization concepts
To determine the feasibility of altering the formation and decay of aircraft trailing vortexes through aerodynamic means, the test capabilities of two wind tunnels and two towing basins were used. The facilities, common models, and measurement techniques that were employed in the evaluation of vortex minimization concepts are described
Kelly Criterion revisited: optimal bets
Kelly criterion, that maximizes the expectation value of the logarithm of
wealth for bookmaker bets, gives an advantage over different class of
strategies. We use projective symmetries for a explanation of this fact.
Kelly's approach allows for an interesting financial interpretation of the
Boltzmann/Shannon entropy. A "no-go" hypothesis for big investors is suggested.Comment: APFA5 Conference, Torino, 200
Space shuttle orbiter leading-edge flight performance compared to design goals
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights
High speed lookup table approach to radiometric calibration of multispectral image data
A concept for performing radiometric correction of multispectral image data onboard a spacecraft at very high data rates is presented and demonstrated. This concept utilized a lookup table approach, implemented in hardware, to convert the raw sensor data into the desired corrected output data. The digital lookup table memory was interfaced to a microprocessor to allow the data correction function to be completely programmable. Sensor data was processed with this approach at rates equal to the access time of the lookup table memory. This concept offers flexible high speed data processing for a wide range of applications and will benefit from the continuing improvements in performance of digital memories
Calibration of shielded microwave probes using bulk dielectrics
A stripline-type near-field microwave probe is microfabricated for microwave
impedance microscopy. Unlike the poorly shielded coplanar probe that senses the
sample tens of microns away, the stripline structure removes the stray fields
from the cantilever body and localizes the interaction only around the
focused-ion beam deposited Pt tip. The approaching curve of an oscillating tip
toward bulk dielectrics can be quantitatively simulated and fitted to the
finite-element analysis result. The peak signal of the approaching curve is a
measure of the sample dielectric constant and can be used to study unknown bulk
materials.Comment: 10 pages, 3 figure
Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures
Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor
Modeling of a Cantilever-Based Near-Field Scanning Microwave Microscope
We present a detailed modeling and characterization of our scalable microwave
nanoprobe, which is a micro-fabricated cantilever-based scanning microwave
probe with separated excitation and sensing electrodes. Using finite-element
analysis, the tip-sample interaction is modeled as small impedance changes
between the tip electrode and the ground at our working frequencies near 1GHz.
The equivalent lumped elements of the cantilever can be determined by
transmission line simulation of the matching network, which routes the
cantilever signals to 50 Ohm feed lines. In the microwave electronics, the
background common-mode signal is cancelled before the amplifier stage so that
high sensitivity (below 1 atto-Farad capacitance changes) is obtained.
Experimental characterization of the microwave probes was performed on
ion-implanted Si wafers and patterned semiconductor samples. Pure electrical or
topographical signals can be realized using different reflection modes of the
probe.Comment: 7 figure
- …