188 research outputs found

    Rms-flux relation in the optical fast variability data of BL Lacertae object S5 0716+714

    Full text link
    The possibility that BL Lac S5 0716+714 exhibits a linear root mean square (rms)-flux relation in its IntraDay Variability (IDV) is analysed. The results may be used as an argument in the existing debate regarding the source of optical IDV in Active Galactic Nuclei. 63 time series in different optical bands were used. A linear rms-flux relation at a confidence level higher than 65% was recovered for less than 8% of the cases. We were able to check if the magnitude is log-normally distributed for eight timeseries and found, with a confidence > 95%, that this is not the case.Comment: Accepted by Astrophysics and Space Scienc

    Inhibition of Vaginal Lactobacilli by a Bacteriocin-Like Inhibitor Produced by Enterococcus faecium 62-6: Potential Significance for Bacterial Vaginosis

    Get PDF
    Objective: Bacterial vaginosis (BV) is characterized by a shift in vaginal tract ecology, which includes a decrease in the concentration and/or prevalence of facultative lactobacilli. Currently, mechanisms which could account for the disappearance of lactobacilli are not well understood. The objective of this study was to determine whether vaginal streptococci/enterococci can produce bacteriocin-like inhibitors antagonistic to vaginal lactobacilli. Methods: Seventy strains of vaginal streptococci or enterococci were tested for antagonistic activities against vaginal lactobacilli using the deferred antagonism technique. Results: One strain, Enterococcus faecium 62-6, which strongly inhibited growth of lactobacilli was selected for further characterization. The spectrum of inhibitory activity of strain 62-6 included Gram-positive organisms from the vaginal environment, although native lactobacilli from the same host were resistant to inhibitor action. Following growth inMRSbroth the strain 62-6 inhibitor was shown to be heat- (100℃, 30 minutes), cold- (4℃, less than 114 days) and pH- (4–7) stable. The sensitivity of inhibitor-containing supernatants to pepsin and α-chymotrypsin suggested an essential proteinaceous component. The inhibitor was sensitive to lipase but resistant to lysozyme. Dialysis of inhibitor-containing culture supernatants suggested a molecular mass greater than 12 000 Da. All physicochemical properties were consistent with its classification as a bacteriocin-like inhibitor. Kinetic assays demonstrated a sharp onset of inhibitor production coinciding with a concentration of 62-6 of 10(7) cfu/ml, suggesting that production may be regulated by quorum sensing. Conclusions: These results may have clinical significance as a novel mechanism to account for the decline of vaginal Lactobacillus populations and contribute to both the establishment and recurrence of BV

    Obesity, physical activity, and the urban environment: public health research needs

    Get PDF
    Persistent trends in overweight and obesity have resulted in a rapid research effort focused on built environment, physical activity, and overweight. Much of the focus of this research has been on the design and form of suburbs. It suggests that several features of the suburban built environment such as low densities, poor street connectivity and the lack of sidewalks are associated with decreased physical activity and an increased risk of being overweight. But compared to suburban residents, inner city populations have higher rates of obesity and inactivity despite living in neighborhoods that are dense, have excellent street connectivity and who's streets are almost universally lined with sidewalks. We suggest that the reasons for this apparent paradox are rooted in the complex interaction of land use, infrastructure and social factors affecting inner city populations. Sometimes seemingly similar features are the result of very different processes, necessitating different policy responses to meet these challenges. For example, in suburbs, lower densities can result from government decision making that leads to restrictive zoning and land use issues. In the inner city, densities may be lowered because of abandonment and disinvestment. In the suburbs, changes in land use regulations could result in a healthier built environment. In inner cities, increasing densities will depend on reversing economic trends and investment decisions that have systematically resulted in distressed housing, abandoned buildings and vacant lots. These varying issues need to be further studied in the context of the totality of urban environments, incorporating what has been learned from other disciplines, such as economics and sociology, as well as highlighting some of the more successful inner city policy interventions, which may provide examples for communities working to improve their health. Certain disparities among urban and suburban populations in obesity and overweight, physical activity and research focus have emerged that are timely to address. Comparable research on the relationship of built environment and health is needed for urban, especially inner city, neighborhoods

    Selective Activation of p120ctn-Kaiso Signaling to Unlock Contact Inhibition of ARPE-19 Cells without Epithelial-Mesenchymal Transition

    Get PDF
    Contact-inhibition ubiquitously exists in non-transformed cells and explains the poor regenerative capacity of in vivo human retinal pigment epithelial cells (RPE) during aging, injury and diseases. RPE injury or degeneration may unlock mitotic block mediated by contact inhibition but may also promote epithelial-mesenchymal transition (EMT) contributing to retinal blindness. Herein, we confirmed that EMT ensued in post-confluent ARPE-19 cells when contact inhibition was disrupted with EGTA followed by addition of EGF and FGF-2 because of activation of canonical Wnt and Smad/ZEB signaling. In contrast, knockdown of p120-catenin (p120) unlocked such mitotic block by activating p120/Kaiso, but not activating canonical Wnt and Smad/ZEB signaling, thus avoiding EMT. Nuclear BrdU labeling was correlated with nuclear release of Kaiso through p120 nuclear translocation, which was associated with activation of RhoA-ROCK signaling, destabilization of microtubules. Prolonged p120 siRNA knockdown followed by withdrawal further expanded RPE into more compact monolayers with a normal phenotype and a higher density. This new strategy based on selective activation of p120/Kaiso but not Wnt/β-catenin signaling obviates the need of using single cells and the risk of EMT, and may be deployed to engineer surgical grafts containing RPE and other tissues

    Epidermal growth factor signalling and bone metastasis

    Get PDF
    Epidermal growth factor (EGF) signalling is well known for its multifaceted functions in development and tissue homoeostasis. The EGF family of ligands and receptors (ERBB family) have also been extensively investigated for their roles in promoting tumourigenesis and metastasis in a variety of cancer types. Recent findings indicate that EGF signalling is an important mediator of bone metastasis in breast, prostate and kidney cancers. The EGF signalling stimulates the growth of bone metastasis directly by increasing tumour cell proliferation and indirectly by engaging bone stromal cell in metastasis-promoting activities. Therefore, molecular targeting of ERBB receptors may benefit patients with bone metastasis and should be evaluated in clinical trials

    Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer

    Get PDF
    Both the non-receptor tyrosine kinase, c-Src, and members of the epidermal growth factor (EGF) receptor family are overexpressed in high percentages of human breast cancers. Because these molecules are plasma membrane-associated and involved in mitogenesis, it has been speculated that they function in concert with one another to promote breast cancer development and progression. Evidence to date supports a model wherein c-Src potentiates the survival, proliferation and tumorigenesis of EGF receptor family members, in part by associating with them. Phosphorylation of the EGF receptor by c-SRC is also critical for mitogenic signaling initiated by the EGF receptor itself, as well as by several G-protein coupled receptors (GPCRs), a cytokine receptor, and the estrogen receptor. Thus, c-Src appears to have pleiotropic effects on cancer cells by modulating the action of multiple growth-promoting receptors

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets

    Clinical trials update: endocrine and biological therapy combinations in the treatment of breast cancer

    Get PDF
    A greater understanding of the biological mechanisms responsible for de novo and acquired endocrine resistance has led to the rational design of clinical trials exploring the benefit of combining hormonal therapies with novel biological agents in an effort to enhance the efficacy of ER+ breast cancer treatment. These studies are increasingly including parallel biological analyses to elucidate the molecular characteristics of those tumors that are most likely to respond to specific targeted/endocrine combinations in an effort to develop a tailored approach to the management of individual patients. Unfortunately despite encouraging preclinical data, some of these combinations have yielded disappointing results in the clinical setting. This article will review the results of clinical trials of endocrine/biological combinations conducted in early and advanced breast cancer as well as provide an update on ongoing studies

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?

    Get PDF
    Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed
    corecore