7,219 research outputs found

    Decoding mode-mixing in black-hole merger ringdown

    Get PDF
    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some m|m| \neq \ell modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes -- the anomalous (3,2)(3,2) harmonic mode -- measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.Comment: 15 pages, 10 figures, 2 tables; new version has improved Figs. 1-3, consistent labelling of simulations between Tables I & II, additional/corrected references, and extra hyphen

    The Final Merger of Black-Hole Binaries

    Full text link
    Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of General Relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear observable record of the process. After decades of slow progress, these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation, and discuss some of the impacts this new knowledge is having in various areas of astrophysics.Comment: 57 pages; 9 figures. Updated references & fixed typos. Published version is at http://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.010909.08324

    Black-hole binaries, gravitational waves, and numerical relativity

    Full text link
    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground- and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only be calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed.Comment: 54 pages, 42 figures. Some typos corrected & references updated. Essentially final published versio

    Wit and Humor of the Bench and Bar (Book Review)

    Get PDF

    Wit and Humor of the Bench and Bar (Book Review)

    Get PDF

    Recent Developments in Double Indemnity Law

    Get PDF

    The experiences of women with polycystic ovary syndrome on a very low-calorie diet

    Get PDF
    The research was funded by an educational grant from LighterLife. Broom was the Medical Director for LighterLife at the time of the research. Johnson is the Head of Nutrition and Research at LighterLife. The authors report no other conflicts of interest in this work.Peer reviewedPublisher PD

    Observing mergers of non-spinning black-hole binaries

    Full text link
    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass ratio on merger signal-to-noise ratios (SNRs) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate-mass-ratio systems.Comment: 13 pages, 11 figures, submitted to Phys. Rev.

    Prompt Electromagnetic Transients from Binary Black Hole Mergers

    Get PDF
    Binary black hole (BBH) mergers provide a prime source for current and future interferometric GW observatories. Massive BBH mergers may often take place in plasma-rich environments, leading to the exciting possibility of a concurrent electromagnetic (EM) signal observable by traditional astronomical facilities. However, many critical questions about the generation of such counterparts remain unanswered. We explore mechanisms that may drive EM counterparts with magnetohydrodynamic simulations treating a range of scenarios involving equal-mass black-hole binaries immersed in an initially homogeneous fluid with uniform, orbitally aligned magnetic fields. We find that the time development of Poynting luminosity, which may drive jet-like emissions, is relatively insensitive to aspects of the initial configuration. In particular, over a significant range of initial values, the central magnetic field strength is effectively regulated by the gas flow to yield a Poynting luminosity of 10451046ρ13M82ergs110^{45}-10^{46} \rho_{-13} M_8^2 \, {\rm erg}\,{\rm s}^{-1}, with BBH mass scaled to M8M/(108M)M_8 \equiv M/(10^8 M_{\odot}) and ambient density ρ13ρ/(1013gcm3)\rho_{-13} \equiv \rho/(10^{-13} \, {\rm g} \, {\rm cm}^{-3}). We also calculate the direct plasma synchrotron emissions processed through geodesic ray-tracing. Despite lensing effects and dynamics, we find the observed synchrotron flux varies little leading up to merger.Comment: 22 pages, 21 figures; additional reference + clarifying text added to match published versio

    Exploring Russian Cyberspace: Digitally-Mediated Collective Action and the Networked Public Sphere

    Get PDF
    This paper summarizes the major findings of a three-year research project to investigate the Internet's impact on Russian politics, media and society. We employed multiple methods to study online activity: the mapping and study of the structure, communities and content of the blogosphere; an analogous mapping and study of Twitter; content analysis of different media sources using automated and human-based evaluation approaches; and a survey of bloggers; augmented by infrastructure mapping, interviews and background research. We find the emergence of a vibrant and diverse networked public sphere that constitutes an independent alternative to the more tightly controlled offline media and political space, as well as the growing use of digital platforms in social mobilization and civic action. Despite various indirect efforts to shape cyberspace into an environment that is friendlier towards the government, we find that the Russian Internet remains generally open and free, although the current degree of Internet freedom is in no way a prediction of the future of this contested space
    corecore