11 research outputs found

    Differential susceptibility of C57BL/6NCr and B6.Cg-Ptprca mice to commensal bacteria after whole body irradiation in translational bone marrow transplant studies

    Full text link
    Abstract Background The mouse is an important and widely utilized animal model for bone marrow transplant (BMT) translational studies. Here, we document the course of an unexpected increase in mortality of congenic mice that underwent BMT. Methods Thirty five BMTs were analyzed for survival differences utilizing the Log Rank test. Affected animals were evaluated by physical examination, necropsy, histopathology, serology for antibodies to infectious disease, and bacterial cultures. Results Severe bacteremia was identified as the main cause of death. Gastrointestinal (GI) damage was observed in histopathology. The bacteremia was most likely caused by the translocation of bacteria from the GI tract and immunosuppression caused by the myeloablative irradiation. Variability in groups of animals affected was caused by increased levels of gamma and X-ray radiation and the differing sensitivity of the two nearly genetically identical mouse strains used in the studies. Conclusion Our retrospective analysis of thirty five murine BMTs performed in three different laboratories, identified C57BL/6NCr (Ly5.1) as being more radiation sensitive than B6.Cg-Ptprca/NCr (Ly5.2). This is the first report documenting a measurable difference in radiation sensitivity and its effects between an inbred strain of mice and its congenic counterpart eventually succumbing to sepsis after BMT.http://deepblue.lib.umich.edu/bitstream/2027.42/112743/1/12967_2007_Article_240.pd

    The risk of infection from polychlorinated biphenyl exposure in harbor porpoise (<em>Phocoena phocoena</em>) - A case-control approach

    Get PDF
    The objective of this study was to determine whether the risk of mortality from infectious disease in harbor porpoise in U.K. waters increased with high exposure to polychlorinated biphenyls (PCBs), using a case–control study design. This is the first time that data from a long-term marine mammal strandings scheme have been used to estimate any increase in risk. The exposure odds ratio (OR) from a logistic regression model with infectious disease deaths as cases and physical trauma deaths as controls, after controlling for the effect of confounding factors, was 1.048 [95% confidence interval (CI), 1.02–1.07]. To further adjust for the difference in energetic status between cases and controls and account for the negative relationship between PCBs (sum of 25 chlorobiphenyl congeners) and blubber mass, we also “standardized” the blubber PCBs to an optimal blubber mass. This lowered the OR to 1.02 (95% CI, 1.00–1.03). Thus, for each 1 mg/kg increase in blubber PCBs, the average increase in risk of infectious disease mortality was 2%. A doubling of risk occurred at approximately 45 mg/kg lipid. In this study, we have endeavored to avoid selection bias by using controls that died of physical trauma as representative of the exposure prevalence in the population that gave rise to the cases. In addition, we controlled for the effect of variation in energetic status among the cases and controls. However, as with case–control studies in human and veterinary epidemiology, unforeseen misclassification errors may result in biased risk estimates in either direction

    Geometric mean ∑25PCBs (geometric 95% CI) in the blubber of harbor porpoises for cases and controls

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The Risk of Infection from Polychlorinated Biphenyl Exposure in the Harbor Porpoise (): A Case–Control Approach"</p><p>Environmental Health Perspectives 2006;114(5):704-711.</p><p>Published online 13 Jan 2006</p><p>PMCID:PMC1459923.</p><p>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.</p
    corecore