34 research outputs found

    Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

    Full text link
    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9+/-0.4 kcal/mol) and longitudinal (14.9+/-1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000-26,000 pN*nm^2), support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblie

    Assessment of exposure to Plasmodium falciparum transmission in a low endemicity area by using multiplex fluorescent microsphere-based serological assays

    Get PDF
    Background: The evaluation of malaria transmission intensity is a crucial indicator for estimating the burden of malarial disease. In this respect, entomological and parasitological methods present limitations, especially in low transmission areas. The present study used a sensitive multiplex assay to assess the exposure to Plasmodium falciparum infection in children living in an area of low endemicity. In three Senegalese villages, specific antibody (IgG) responses to 13 pre-erythrocytic P. falciparum peptides derived from Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, Csp and Pf11.1 proteins were simultaneously evaluated before (June), at the peak (September) and after (December) the period of malaria transmission, in children aged from 1 to 8 years. Results: Compared to other antigens, a high percentage of seropositivity and specific antibody levels were detected with Glurp, Salsa1, Lsa3NR2, and Lsa1J antigens. The seropositivity increased with age for all tested antigens. Specific IgG levels to Glurp, Salsa1, Lsa3NR2, and Lsa1J were significantly higher in P. falciparum infected children compared to non-infected and this increase is significantly correlated with parasite density. Conclusion: The multiplex assay represents a useful technology for a serological assessment of rapid variations in malaria transmission intensity, especially in a context of low parasite rates. The use of such combined serological markers (i.e. Glurp, Lsa1, Lsa3, and Salsa) could offer the opportunity to examine these variations over time, and to evaluate the efficacy of integrated malaria control strategies

    Growth Mindset as a Student Support Tool during a Pandemic

    No full text
    Supporting students in their learning is important at any time but especially so during the Covid-19 pandemic. One way to help students feel supported is to encourage them to develop a growth mindset for their learning. In this paper, we present data collected during the Fall 2020 to Spring 2022 semesters from a general biochemistry course, where frequent short activities were completed to help students foster a growth mindset. Survey responses indicate that 73.6% of all students felt they had more of a growth mindset at the end of the course compared to only 29.6% of students knowing about growth mindset before the class. Further, the fact that the start of the semester activities were rated the most helpful by students shows a need for early, and even the first day of class, interventions on growth mindset

    Multiscale Modeling of the Nanomechanics of Microtubule Protofilaments

    No full text
    Large-size biomolecular systems that spontaneously assemble, disassemble, and self-repair by controlled inputs play fundamental roles in biology. Microtubules (MTs), which play important roles in cell adhesion and cell division, are a prime example. MTs serve as ″tracks″ for molecular motors, and their biomechanical functions depend on dynamic instabilitya stochastic switching between periods of rapid growing and shrinking. This process is controlled by many cellular factors so that growth and shrinkage periods are correlated with the life cycle of a cell. Resolving the molecular basis for the action of these factors is of paramount importance for understanding the diverse functions of MTs. We employed a multiscale modeling approach to study the force-induced MT depolymerization by analyzing the mechanical response of a MT protofilament to external forces. We carried out self-organized polymer (SOP) model based simulations accelerated on Graphics Processing Units (GPUs). This approach enabled us to follow the mechanical behavior of the molecule on experimental time scales using experimental force loads. We resolved the structural details and determined the physical parameters that characterize the stretching and bending modes of motion of a MT protofilament. The central result is that the severing action of proteins, such as katanin and kinesin, can be understood in terms of their mechanical coupling to a protofilament. For example, the extraction of tubulin dimers from MT caps by katanin can be achieved by pushing the protofilament toward the axis of the MT cylinder, while the removal of large protofilaments curved into ″ram’s horn″ structures by kinesin is the result of the outward bending of the protofilament. We showed that, at the molecular level, these types of deformations are due to the anisotropic, but homogeneous, micromechanical properties of MT protofilaments

    Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation <i>in Silico</i>

    No full text
    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations <i>in silico</i> of a contiguous microtubule fragment. A close match between the simulated and experimental force–deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol) and longitudinal (14.9 ± 1.5 kcal/mol) tubulin–tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000–26,000 pN·nm<sup>2</sup>) support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed <i>in silico</i> nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies

    Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation <i>in Silico</i>

    No full text
    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations <i>in silico</i> of a contiguous microtubule fragment. A close match between the simulated and experimental force–deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol) and longitudinal (14.9 ± 1.5 kcal/mol) tubulin–tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000–26,000 pN·nm<sup>2</sup>) support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed <i>in silico</i> nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies
    corecore