3,249 research outputs found

    Simulating Energy Efficient Control of Multiple-Compressor Compressed Air Systems

    Get PDF
    In many industrial facilities it is common for more than one air compressor to be operating simultaneously to meet the compressed air demand. The individual compressor set-points and how these compressors interact and respond to the facility demand have a significant impact on the compressed air system total power consumption and efficiency. In the past, compressors were staged by cascading the pressure band of each compressor in the system. Modern automatic sequencers now allow more intelligent and efficient staging of air compressors. AirSim, a compressed air simulation tool, is now able to simulate multiple-compressor systems with pressure band and automatic sequencer controls. AirSim can simulate a current compressed air system and a proposed system with changes to the equipment and/or controls. Thus, quickly and accurately, users can calculate the energy and cost savings expected from many proposed compressed air system upgrades

    Synergistic antibacterial effects of theaflavin in combination with ampicillin against hospital isolates of Stenotrophomonas Maltophilia

    Full text link
    Stenotrophomonas maltophilia is an important opportunistic nosocomial pathogen that shows intrinsic resistance to many antibiotics. This often limits treatment options and can cause lengthy hospital stays. Combination treatments are often used to combat resistance and using natural compounds such as polyphenols could give increased treatment options and even the reuse of antibiotics to which high levels of resistance have been observed. A checkerboard assay was used to determine if any synergy exists between ampicillin and the polyphenol theaflavin against 9 clinical isolates and one control isolate (NCTC 13014) of S. maltophilia. It was discovered that significant synergy (P 0.05) does exist between theaflavin and ampicillin, reducing the mean MIC of ampicillin from 12.5-22.9 µg/mL, in liquid culture, to 3.125-6.25 µg/mL. The FIC index was calculated to be 0.22-0.35 confirming synergy. From these results, significant potential for medical applications can be seen and further investigation is recommended

    Exploring the use of a modified high-temperature, short-time continuous heat exchanger with extended holding time (HTST-EHT) for thermal inactivation of trypsin following selective enzymatic hydrolysis of the ß- lactoglobulin fraction in whey protein isolate

    Get PDF
    peer-reviewedTryptic hydrolysis of whey protein isolate under specific incubation conditions including a relatively high enzyme:substrate (E:S) ratio of 1:10 is known to preferentially hydrolyse ß-lactoglobulin (ß-LG), while retaining the other major whey protein fraction, i.e., x-lactalbumin(x-LA) mainly intact. An objective of the present work was to explore the e ects of reducing E:S (1:10 1:30, 1:50, 1:100) on the selective hydrolysis of ß-LG by trypsin at pH 8.5 and 25 °C in a 5% (w/v) WPI solution during incubation periods ranging from 1 to 7 h. In addition, the use of a pilot-scale continuous high-temperature, short-time (HTST) heat exchanger with an extended holding time (EHT) of 5 min as a means of inactivating trypsin to terminate hydrolysis was compared with laboratory-based acidification to <pH 3 by the addition of HCl, and batch sample heating in a water bath at 85 °C. An E:S of 1:10 resulted in 100% and 30% of ßLG and x-LA hydrolysis, respectively, after 3 h, while an E:S reduction to 1:30 and 1:50 led >90% ß-LG hydrolysis after respective incubation periods of 4 and 6 h, with <5% hydrolysis of x-LA in the case of 1:50. Continuous HTST-EHT treatment was shown to be an e ective inactivation process allowing for the maintenance of substrate selectivity. However, HTST-EHT heating resulted in protein aggregation, which negatively impacts the downstream recovery of intact -LA. An optimum E:S was determined to be 1:50, with an incubation time ranging from 3 h to 7 h leading to 90% ß-LG hydrolysis and minimal degradation of x-LA. Alternative batch heating by means of a water bath to inactivate trypsin caused considerable digestion of x-LA, while acidification to <pH 3.0 restricted subsequent functional applications of the protein

    Small scale structure and mixing at the edge of the Antarctic vortex

    Get PDF
    Small scale correlations and patterns in the chemical tracers measured from the NASA ER-2 aircraft in the 1987 AAOE campaign can be used to investigate the structure of the edge of the polar vortex and the chemically perturbed region within it. Examples of several types of transport processes can be found in the data. Since ClO and O3 have similar vertical gradients and opposite horizontal gradients near the chemically perturbed region, the correlation between ClO and O3 can be used to study the extent of horizontal transport at the edge of the chemically perturbed region. Horizontal transport dominates the correlation for a latitude band up to 4 degrees on each side of the boundary. This implies a transition zone containing a substantial fraction of the mass of the total polar vortex. Similar horizontal transport can be seen in other tracers as well. It has not been possible to distinguish reversible transport from irreversible mixing. One manifestation of the horizontal transport is that the edge of the chemically perturbed region is often layered rather than a vertical curtain. This can be seen from the frequent reversed vertical gradients of NO2, caused by air with high NO2 overlapping layers with lower mixing ratios. Water and NO2 are positively correlated within the chemically perturbed region. This is the opposite sign to the correlation in the unperturbed stratosphere. The extent of the positive correlation is too great to be attributed solely to horizontal mixing. Instead, it is hypothesized that dehydration and descent are closely connected on a small scale, possibly due to radiative cooling of the clouds that also cause ice to fall to lower altitudes

    From Molecular Classification to Targeted Therapeutics: The Changing Face of Systemic Therapy in Metastatic Gastroesophageal Cancer

    Get PDF
    Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1) or mismatch repair genes (Lynch syndrome) were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician’s therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients

    CO2 assisted blending of poly(lactic acid) and poly(ε-caprolactone)

    Get PDF
    Poly(lactic acid) (PLA) is gaining increasing interest from the packaging industry as a biodegradable alternative to oil based polymers such as polypropylene (PP) and polyethylene terephthalate (PET). However, its’ inherent brittle nature prevents widescale commercial use. Blending in order to improve the Young’s modulus, yield stress and elongation to break, provides a possible alternative although many polymers have been found to be immiscible with PLA. In this study, high pressure carbon dioxide (CO2) was utilised during blending to encourage miscibility between two normally immiscible polymers: poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA). Blends were prepared by melt blending in the presence of carbon dioxide (CO2) and compared to solvent casting and melt blending with a single-screw extruder. CO2 assisted blends demonstrated a significant reduction in the size and number of PCL domains in a PLA matrix, and consequently improved the adhesion between phases at the microscale. The optimum melt blend composition for Young’s modulus, yield stress and elongation to break was found to be 75% PLA and 25% PCL. Mechanical properties of PLA 2002D blends were further improved when prepared by CO2 assisted melt blending

    In-situ measurements of total reactive nitrogen, total water vapor, and aerosols in polar stratospheric clouds in the Antarctic stratosphere

    Get PDF
    Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented

    Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    Get PDF
    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations

    Exploring and interpreting spatiotemporal interactions between native and invasive carnivores across a gradient of rainforest degradation

    Get PDF
    Studies of elusive carnivores often rely on passive sampling when investigating either spatial or temporal interactions. However, inference on behavioral mechanisms are usually lacking. We present an analysis that combines previously published spatial co-occurrence estimates and temporal kernel density estimates to explore spatiotemporal interspecific interactions. We do so by deriving a spatiotemporal value (STV) that is a relative measure of potential interaction in both niche dimensions, across a gradient of degradation, for rainforest carnivore pairs in Madagascar. We also use a conceptual framework to provide insight into the potential behavioral mechanisms of habitat selection. Of the six native and three invasive carnivores, we estimate the spatiotemporal interactions for twelve pairings, which range from no spatial/temporal relationship (n = 5) to spatiotemporal aggregation or segregation (n = 7). We visualized these spatiotemporal interactions along a fragmentation gradient and demonstrate that these interactions are not static, as STV overlap increases with increasing anthropogenic disturbance. Of the three invasive carnivores (free-ranging dogs Canis familiaris, cats Felis species, and small Indian civets Viverricula indica) the latter had the highest number of spatial occurrence (n = 4) and spatiotemporal overlap (n = 4) relationships with native carnivores. Our results highlight the potential for increasing direct and indirect interactions between native and invasive species as forest degradation and invasive predators increase. Our approach allows us to better understand adaptive behaviors, plasticity in temporal activity, community assemblage, and to develop targeted conservation strategies to manage ecological communities in rapidly changing ecosystems
    • …
    corecore