132 research outputs found

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Modulation of radial blood flow during Braille character discrimination task

    Get PDF
    Purpose: Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. Results: HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). Conclusions: These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception

    Spin alignment of leading K(892)0K^{*}(892)^{0} mesons in hadronic Z0Z^0 decays

    Get PDF
    Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb −1 and 19.7 fb −1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, μ = σ/σ SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV

    Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV

    Get PDF
    The tt¯ charge asymmetry in proton-proton collisions at s√ = 7 TeV is measured using the dilepton decay channel (ee, e μ , or μμ ). The data correspond to a total integrated luminosity of 5.0 fb −1 , collected by the CMS experiment at the LHC. The tt and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A C = −0 . 010 ± 0 . 017 (stat . ) ± 0 . 008 (syst . ) and AlepC = 0 . 009 ± 0 . 010 (stat . ) ± 0 . 006 (syst . ). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the tt¯ system. All measurements are consistent with the expectations of the standard model

    Measurement of prompt Jψ\psi pair production in pp collisions at \sqrt s = 7 Tev

    Get PDF
    Production of prompt J/ ψ meson pairs in proton-proton collisions at s s√ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb −1 . The two J/ ψ mesons are fully reconstructed via their decays into μ + μ − pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ ψ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ ψ transverse momentum ( p T J/ ψ ) and rapidity (| y J/ ψ |): | y J/ ψ | 6.5 GeV/ c ; 1.2 4.5 GeV/ c . The total cross section, assuming unpolarized prompt J/ ψ pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ ψ polarization imply modifications to the cross section ranging from −31% to +27%

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link
    corecore