104 research outputs found

    NOTCH Signaling in T-Cell-Mediated Anti-Tumor Immunity and T-Cell-Based Immunotherapies

    Get PDF
    The NOTCH (1–4) family of receptors are highly conserved and are critical in regulating many developmental processes and in the maintenance of tissue homeostasis. Our laboratory and numerous others have demonstrated that aberrant NOTCH signaling is oncogenic in several different cancer types. Conversely, there is also evidence that NOTCH can also function as a tumor suppressor. In addition to playing an essential role in tumor development, NOTCH receptors regulate T-cell development, maintenance, and activation. Recent studies have determined that NOTCH signaling is required for optimal T-cell-mediated anti-tumor immunity. Consequently, tumor cells and the tumor microenvironment have acquired mechanisms to suppress NOTCH signaling to evade T-cell-mediated killing. Tumor-mediated suppression of NOTCH signaling in T-cells can be overcome by systemic administration of NOTCH agonistic antibodies and ligands or proteasome inhibitors, resulting in sustained NOTCH signaling and T-cell activation. In addition, NOTCH receptors and ligands are being utilized to improve the generation and specificity of T-cells for adoptive transplant immunotherapies. In this review, we will summarize the role(s) of NOTCH signaling in T-cell anti-tumor immunity as well as TCR- and chimeric antigen receptor-based immunotherapies

    RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-kappaB Activation

    Get PDF
    BACKGROUND AND AIMS: Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- kappaB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. METHODS: Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKbeta in IEC (Ikkbeta(EE)(IEC)), Ripk1(D138N/D138N) knockin mice, and Ripk3(-/-) mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. RESULTS: NF-kappaB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkbeta(EE)(IEC) mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKbeta facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. CONCLUSIONS: Contrary to common expectations, chronic NF-kappaB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD

    NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro

    Get PDF
    INTRODUCTION: NOTCH activation has been recently implicated in human breast cancers, associated with a poor prognosis, and tumor-initiating cells are hypothesized to mediate resistance to treatment and disease relapse. To address the role of NOTCH1 in mammary gland development, transformation, and mammary tumor-initiating cell activity, we developed a doxycycline-regulated mouse model of NOTCH1-mediated mammary transformation. METHODS: Mammary gland development was analyzed by using whole-mount analysis and by flow cytometry in nulliparous transgenic mice maintained in the presence/absence of doxycycline (or intracellular NOTCH1). Mammary tumors were examined histologically and immunophenotyped by staining with antibodies followed by flow cytometry. Tumors were transplanted into mammary fat pads under limiting dilution conditions, and tumor-initiating cell frequency was calculated. Mammary tumor cells were also plated in vitro in a tumorsphere assay in the presence/absence of doxycycline. RNA was isolated from mammary tumor cell lines cultured in the presence/absence of doxycycline and used for gene-expression profiling with Affymetrix mouse arrays. NOTCH1-regulated genes were identified and validated by using quantitative real-time polymerase chain reaction (PCR). Mammary tumor-bearing mice were treated with doxycycline to suppress NOTCH1 expression, and disease recurrence was monitored. RESULTS: Similar to published studies, we show that constitutive expression of human intracellular NOTCH1 in the developing mouse mammary gland inhibits side branching and promotes luminal cell fate. These mice develop mammary adenocarcinomas that express cytokeratin (CK) 8/18. In vivo limiting-dilution analyses revealed that these mammary tumors exhibit functional heterogeneity and harbor a rare (1/2,978) mammary tumor-initiating cell population. With this dox-regulated NOTCH1 mammary tumor model, we demonstrate that NOTCH1 inhibition results in mammary tumor regression in vivo and prevents disease recurrence in four of six tumors tested. Consistent with the in vivo data, NOTCH1 inhibition reduces mammary tumorsphere activity in vitro. We also identify the embryonic stem cell transcription factor Nanog as a novel NOTCH1-regulated gene in tumorspheres and in mouse and human breast cancer cell lines. CONCLUSIONS: These data indicate that NOTCH1 inhibition results in mammary tumor regression in vivo and interferes with disease recurrence. We demonstrate that NOTCH1-transformed mouse mammary tumors harbor a rare mammary tumor-initiating population and that NOTCH1 contributes to mammary tumor-initiating activity. This work raises the possibility that NOTCH therapeutics may target mammary tumor-initiating cells in certain human breast cancer subtypes

    Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice

    Get PDF
    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2Y393F) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2Y393F/S394A mice and Mdm2S394A mice display similar phenotypes

    ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data

    Get PDF
    BACKGROUND: ATAC-seq (Assays for Transposase-Accessible Chromatin using sequencing) is a recently developed technique for genome-wide analysis of chromatin accessibility. Compared to earlier methods for assaying chromatin accessibility, ATAC-seq is faster and easier to perform, does not require cross-linking, has higher signal to noise ratio, and can be performed on small cell numbers. However, to ensure a successful ATAC-seq experiment, step-by-step quality assurance processes, including both wet lab quality control and in silico quality assessment, are essential. While several tools have been developed or adopted for assessing read quality, identifying nucleosome occupancy and accessible regions from ATAC-seq data, none of the tools provide a comprehensive set of functionalities for preprocessing and quality assessment of aligned ATAC-seq datasets. RESULTS: We have developed a Bioconductor package, ATACseqQC, for easily generating various diagnostic plots to help researchers quickly assess the quality of their ATAC-seq data. In addition, this package contains functions to preprocess aligned ATAC-seq data for subsequent peak calling. Here we demonstrate the utilities of our package using 25 publicly available ATAC-seq datasets from four studies. We also provide guidelines on what the diagnostic plots should look like for an ideal ATAC-seq dataset. CONCLUSIONS: This software package has been used successfully for preprocessing and assessing several in-house and public ATAC-seq datasets. Diagnostic plots generated by this package will facilitate the quality assessment of ATAC-seq data, and help researchers to evaluate their own ATAC-seq experiments as well as select high-quality ATAC-seq datasets from public repositories such as GEO to avoid generating hypotheses or drawing conclusions from low-quality ATAC-seq experiments. The software, source code, and documentation are freely available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/ATACseqQC.html

    RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome

    Get PDF
    Receptor interacting protein kinase 1 (RIPK1) has important kinase-dependent and kinase-independent scaffolding functions that activate or prevent apoptosis or necroptosis in a cell context-dependent manner. The kinase activity of RIPK1 mediates hypothermia and lethality in a mouse model of TNF-induced shock, reflecting the hyperinflammatory state of systemic inflammatory response syndrome (SIRS), where the proinflammatory cytokine storm has long been viewed as detrimental. Here, we demonstrate that cytokine and chemokine levels did not predict survival and, importantly, that kinase-inactive Ripk1D138N/D138N hematopoietic cells afforded little protection from TNF- or TNF/zVAD-induced shock in reconstituted mice. Unexpectedly, RIPK1 kinase-inactive mice transplanted with WT hematopoietic cells remained resistant to TNF-induced shock, revealing that a nonhematopoietic lineage mediated protection. TNF-treated Ripk1D138N/D138N mice exhibited no significant increases in intestinal or vascular permeability, nor did they activate the clotting cascade. We show that TNF administration damaged the liver vascular endothelium and induced phosphorylated mixed lineage kinase domain-like (phospho-MLKL) reactivity in endothelial cells isolated from TNF/zVAD-treated WT, but not Ripk1D138N/D138N, mice. These data reveal that the tissue damage present in this SIRS model is reflected, in part, by breaks in the vasculature due to endothelial cell necroptosis and thereby predict that RIPK1 kinase inhibitors may provide clinical benefit to shock and/or sepsis patients

    CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN

    Get PDF
    SummaryTumor necrosis factor (TNF) induces necroptosis, a RIPK3/MLKL-dependent form of inflammatory cell death. In response to infection by Gram-negative bacteria, multiple receptors on macrophages, including TLR4, TNF, and type I IFN receptors, are concurrently activated, but it is unclear how they crosstalk to regulate necroptosis. We report that TLR4 activates CASPASE-8 to cleave and remove the deubiquitinase cylindromatosis (CYLD) in a TRIF- and RIPK1-dependent manner to disable necroptosis in macrophages. Inhibiting CASPASE-8 leads to CYLD-dependent necroptosis caused by the TNF produced in response to TLR4 ligation. While lipopolysaccharides (LPS)-induced necroptosis was abrogated in Tnf−/− macrophages, a soluble TNF antagonist was not able to do so in Tnf+/+ macrophages, indicating that necroptosis occurs in a cell-autonomous manner. Surprisingly, TNF-mediated auto-necroptosis of macrophages requires type I IFN, which primes the expression of key necroptosis-signaling molecules, including TNFR2 and MLKL. Thus, the TNF necroptosis pathway is regulated by both negative and positive crosstalk
    corecore