3 research outputs found

    Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    Get PDF
    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery

    Physiological stress correlates with year, Chinook availability, vessel abundance and an interaction between Chinook and vessel abundance.

    No full text
    <p>According to the best-fit mixed effects model, glucocorticoid concentrations decreased with increased Chinook salmon CPUE, after taking into account a 10-day lag time for fish to swim from the study site to the test fishery (column A). The best-fit model also includes an interaction between Chinook counts and vessel abundance on glucocorticoids, whereby fecal glucocortiods are always high at times of low Chinook counts. However, an increase in glucocorticoids with increasing vessel abundance is observed only during times of relatively high Chinook counts (column B set to the Chinook value indicated by the vertical line in the corresponding panel of column A). The y-axis represents glucocorticoid concentration marginal means predicted from the best-fit model. The hashed blue lines indicate 95% confidence intervals. Vertical red dotted lines indicate Julian day 230 (August 18), the time of maximum vessel traffic and approximately ten days before the maximum Chinook salmon catch each year. Horizontal red dotted lines indicate dependent variable marginal means for each year on day 230 within the model.</p
    corecore