44 research outputs found

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Do limits exist on potential woody cover of Brazilian savanna?

    No full text
    With the increasing concern of woody plant encroachment worldwide in savanna ecosystems, many studies endeavor to examine the upper bound of woody plant cover, which is referred to as potential woody cover. Potential woody cover defines the maximum possible woody plant encroachment and bears strong implications on savanna dynamics. Both African and North American savannas have been reported to exhibit limits on potential woody cover below 650 and 660 mm of mean annual precipitation (MAP), respectively. At present it is less clear whether that limit exists and at what level in the Brazilian savanna (the Cerrado) of South America, throughout which MAP is above 790 mm. This study models the potential woody cover pattern of Brazilian savanna over the present precipitation gradient and in relation to surface and subsurface soil moisture (SM) separately. Remotely sensed products were processed in Google Earth Engine (GEE), and included MODIS tree cover (MOD44B), TRMM monthly precipitation (3B43), and NASA-USDA Enhanced SMAP Global soil moisture. Quantile regression results suggest that below respective thresholds of MAP, surface SM, and subsurface SM, potential woody cover in Brazilian savanna is constrained. Comparison to the savanna in central Texas of the United States reveals that water availability is not the only determinant of potential woody cover. Regional context such as precipitation seasonality and woody plant species are important factors. This study also underscores the discrepancy between potential woody cover modelled based on MAP and that based on soil moisture (surface and subsurface)

    Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana

    No full text
    Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari

    Fluid Waters and Rigid Livelihoods in the Okavango Delta of Botswana

    No full text
    Current and future impacts of climate change include increasing variability in a number of biophysical processes, such as temperature, precipitation, and flooding. The Intergovernmental Panel on Climate Change (IPCC) has suggested that Southern Africa is particularly vulnerable to the anticipated impacts from global climate change and that social and ecological systems in the region will be disrupted and likely transformed in future decades. This article engages with current research within geography and cognate disciplines on the possibilities for responsive livelihoods within socio-ecological systems experiencing biophysical change. The paper draws from an ongoing research project that is evaluating perceptions of environmental change, specifically of precipitation and flooding dynamics, in order to understand social responses. We report on the findings from qualitative interviewing conducted in 2010 and 2011 in the communities of Etsha 1, Etsha 6, and Etsha 13 within the Okavango Delta of Botswana. While flooding and precipitation patterns have been dynamic and spatially differentiated, some livelihood systems have proven rigid in their capacity to enable adaptive responses. We assert this demonstrates the need for detailed research on livelihood dynamics to support adjustments to biophysical variability within socio-ecological systems experiencing change

    Human–Wildlife Interactions and Environmental Dynamics in the Okavango Delta, Botswana

    No full text
    <p>The Okavango Delta in Botswana hosts abundant wildlife and a human population with diverse livelihoods. Representing a heterogeneous landscape nuanced by spatial and temporal variability, the region has recently seen an expansion of floodwaters with social impacts ranging from livelihood disruption to human displacement. This article reports on in-depth interviews conducted in 2012 regarding these transitions in Mababe, a community in the eastern Okavango Delta, to evaluate how dynamic environmental processes alter perceptions and livelihood responses. We focus on community members’ variable interactions with wildlife in spaces of human–wildlife overlap also experiencing change. While human–wildlife interactions can have negative effects, we find that perpetuating the common narrative of human–wildlife conflict overlooks how disruptions can usher in new relationships between people and animals. In order to move beyond the conflict narrative, we conclude that spatial and temporal context is essential to evaluate effects of dynamic, uneven, and sometimes unpredictable human–wildlife encounters.</p

    Anterior tooth growth periods in Neandertals were comparable to those of modern humans

    No full text
    A longstanding controversy in paleoanthropology surrounds the question of whether Neandertals shared the prolonged growth periods of modern humans. To address this question, this investigation compares the duration of enamel formation in Neandertals with that of three comparative modern human groups. Because dental and somatic growth are correlated with each other, dental growth periods are indicative of overall periods of growth. Growth increments on the anterior teeth of Neandertals, modern Inuit, and modern people from Newcastle and southern Africa were counted and their means compared. In addition, potential variation in the time spans represented by growth increments was considered and incorporated into the analysis of enamel formation times. These analyses show that Neandertal imbricational enamel formation times, although likely to have been faster than those of the Inuit, are not likely to have been faster than those of the Newcastle sample and for some teeth are clearly slower than those of the southern African sample. Thus, Neandertal tooth growth and, by extension, somatic growth, appears to be encompassed within the modern human range of interpopulation variation

    Risk preference following adolescent alcohol use is associated with corrupted encoding of costs but not rewards by mesolimbic dopamine

    No full text
    Several emerging theories of addiction have described how abused substances exploit vulnerabilities in decision-making processes. These vulnerabilities have been proposed to result from pharmacologically corrupted neural mechanisms of normal brain valuation systems. High alcohol intake in rats during adolescence has been shown to increase risk preference, leading to suboptimal performance on a decision-making task when tested in adulthood. Understanding how alcohol use corrupts decision making in this way has significant clinical implications. However, the underlying mechanism by which alcohol use increases risk preference remains unclear. To address this central issue, we assessed dopamine neurotransmission with fast-scan cyclic voltammetry during reward valuation and risk-based decision making in rats with and without a history of adolescent alcohol intake. We specifically targeted the mesolimbic dopamine system, the site of action for virtually all abused substances. This system, which continuously develops during the adolescent period, is central to both reward processing and risk-based decision making. We report that a history of adolescent alcohol use alters dopamine signaling to risk but not to reward. Thus, a corruption of cost encoding suggests that adolescent alcohol use leads to long-term changes in decision making by altering the valuation of risk
    corecore