2,089 research outputs found

    1I/2017 U1 (`Oumuamua) is Hot: Imaging, Spectroscopy and Search of Meteor Activity

    Get PDF
    1I/2017 U1 (`Oumuamua), a recently discovered asteroid in a hyperbolic orbit, is likely the first macroscopic object of extrasolar origin identified in the solar system. Here, we present imaging and spectroscopic observations of \textquoteleft Oumuamua using the Palomar Hale Telescope as well as a search of meteor activity potentially linked to this object using the Canadian Meteor Orbit Radar. We find that \textquoteleft Oumuamua exhibits a moderate spectral gradient of 10%±6% (100 nm)−110\%\pm6\%~(100~\mathrm{nm})^{-1}, a value significantly lower than that of outer solar system bodies, indicative of a formation and/or previous residence in a warmer environment. Imaging observation and spectral line analysis show no evidence that \textquoteleft Oumuamua is presently active. Negative meteor observation is as expected, since ejection driven by sublimation of commonly-known cometary species such as CO requires an extreme ejection speed of ∼40\sim40 m s−1^{-1} at ∼100\sim100 au in order to reach the Earth. No obvious candidate stars are proposed as the point of origin for \textquoteleft Oumuamua. Given a mean free path of ∼109\sim10^9 ly in the solar neighborhood, \textquoteleft Oumuamua has likely spent a very long time in the interstellar space before encountering the solar system.Comment: ApJL in pres

    Near-UV OH Prompt Emission in the Innermost Coma of 103P/Hartley 2

    Full text link
    The Deep Impact spacecraft fly-by of comet 103P/Hartley 2 occurred on 2010 November 4, one week after perihelion with a closest approach (CA) distance of about 700 km. We used narrowband images obtained by the Medium Resolution Imager (MRI) onboard the spacecraft to study the gas and dust in the innermost coma. We derived an overall dust reddening of 15\%/100 nm between 345 and 749 nm and identified a blue enhancement in the dust coma in the sunward direction within 5 km from the nucleus, which we interpret as a localized enrichment in water ice. OH column density maps show an anti-sunward enhancement throughout the encounter except for the highest resolution images, acquired at CA, where a radial jet becomes visible in the innermost coma, extending up to 12 km from the nucleus. The OH distribution in the inner coma is very different from that expected for a fragment species. Instead, it correlates well with the water vapor map derived by the HRI-IR instrument onboard Deep Impact \citep{AHearn2011}. Radial profiles of the OH column density and derived water production rates show an excess of OH emission during CA that cannot be explained with pure fluorescence. We attribute this excess to a prompt emission process where photodissociation of H2_2O directly produces excited OH*(A2Σ+A^2\it{\Sigma}^+) radicals. Our observations provide the first direct imaging of Near-UV prompt emission of OH. We therefore suggest the use of a dedicated filter centered at 318.8 nm to directly trace the water in the coma of comets.Comment: 21 page

    Forward Modeling of Double Neutron Stars: Insights from Highly-Offset Short Gamma-Ray Bursts

    Full text link
    We present a detailed analysis of two well-localized, highly offset short gamma-ray bursts---GRB~070809 and GRB~090515---investigating the kinematic evolution of their progenitors from compact object formation until merger. Calibrating to observations of their most probable host galaxies, we construct semi-analytic galactic models that account for star formation history and galaxy growth over time. We pair detailed kinematic evolution with compact binary population modeling to infer viable post-supernova velocities and inspiral times. By populating binary tracers according to the star formation history of the host and kinematically evolving their post-supernova trajectories through the time-dependent galactic potential, we find that systems matching the observed offsets of the bursts require post-supernova systemic velocities of hundreds of kilometers per second. Marginalizing over uncertainties in the stellar mass--halo mass relation, we find that the second-born neutron star in the GRB~070809 and GRB~090515 progenitor systems received a natal kick of ≳200 km s−1\gtrsim 200~\mathrm{km\,s}^{-1} at the 78\% and 91\% credible levels, respectively. Applying our analysis to the full catalog of localized short gamma-ray bursts will provide unique constraints on their progenitors and help unravel the selection effects inherent to observing transients that are highly offset with respect to their hosts.Comment: 18 pages, 7 figures, 1 table. ApJ, in pres

    Urinary ATP and visualization of intracellular bacteria: a superior diagnostic marker for recurrent UTI in renal transplant recipients?

    Get PDF
    Renal transplant recipients (RTR) are highly susceptible to urinary tract infections (UTIs) with over 50% of patients having at least one UTI within the first year. Yet it is generally acknowledged that there is considerable insensitivity and inaccuracy in routine urinalysis when screening for UTIs. Thus a large number of transplant patients with genuine urine infections may go undiagnosed and develop chronic recalcitrant infections, which can be associated with graft loss and morbidity. Given a recent study demonstrating ATP is released by urothelial cells in response to bacteria exposure, possibly acting at metabotropic P2Y receptors mediating a proinflammatory response, we have investigated alternative, and possibly more appropriate, urinalysis techniques in a cohort of RTRs.Mid-stream urine (MSU) samples were collected from 53 outpatient RTRs. Conventional leukocyte esterase and nitrite dipstick tests, and microscopic pyuria counts (in 1 ?l), ATP concentration measurements, and identification of intracellular bacteria in shed urothelial cells, were performed on fresh unspun samples and compared to ‘gold-standard’ bacterial culture results.Of the 53 RTRs, 22% were deemed to have a UTI by ‘gold-standard’ conventional bacteria culture, whereas 87%, 8% and 4% showed evidence of UTIs according to leukocyte esterase dipstick, nitrite dipstick, and a combination of both dipsticks, respectively. Intracellular bacteria were visualized in shed urothelial cells of 44% of RTRs, however only 1 of the 23 RTRs (44%) was deemed to have a UTI by conventional bacteria culture. A significant association of the ‘gold-standard’ test with urinary ATP concentration combined with visualization of intracellular bacteria in shed urothelial cells was determined using the Fisher’s exact test.It is apparent that standard bedside tests for UTIs give variable results and that seemingly quiescent bacteria in urothelial cells are very common in RTRs and may represent a focus of subclinical infection. Furthermore, our results suggest urinary ATP concentration combined with detection of intracellular bacteria in shed urinary epithelial cells may be a sensitive means by which to detect ‘occult’ infection in RTRs

    Dust Emission and Dynamics

    Full text link
    When viewed from Earth, most of what we observe of a comet is dust. The influence of solar radiation pressure on the trajectories of dust particles depends on their cross-section to mass ratio. Hence solar radiation pressure acts like a mass spectrometer inside a cometary tail. The appearances of cometary dust tails have long been studied to obtain information on the dust properties, such as characteristic particle size and initial velocity when entering the tail. Over the past two decades, several spacecraft missions to comets have enabled us to study the dust activity of their targets at much greater resolution than is possible with a telescope on Earth or in near-Earth space, and added detail to the results obtained by the spacecraft visiting comet 1P/Halley in 1986. We now know that the dynamics of dust in the inner cometary coma is complex and includes a significant fraction of particles that will eventually fall back to the surface. The filamented structure of the near-surface coma is thought to result from a combination of topographic focussing of the gas flow, inhomogeneous distribution of activity across the surface, and projection effects. It is possible that some larger-than-centimetre debris contains ice when lifted from the surface, which can affect its motion. Open questions remain regarding the microphysics of the process that leads to the detachment and lifting of dust from the surface, the evolution of the dust while travelling away from the nucleus, and the extent to which information on the nucleus activity can be retrieved from remote observations of the outer coma and tail.Comment: Chapter in press for the book Comets III, edited by K. Meech and M. Combi, University of Arizona Pres
    • …
    corecore