28,764 research outputs found

    The Steady-State Transport of Oxygen through Hemoglobin Solutions

    Get PDF
    The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated

    Diffusivity Measurements of Human Methemoglobin

    Get PDF
    Experimental measurements of the diffusion coefficient of human methemoglobin were made at 25°C with a modified Stokes diaphragm diffusion cell. A Millipore filter was used in place of the ordinary fritted disc to facilitate rapid achievement of steady state in the diaphragm. Methemoglobin concentrations varied from approximately 5 g/100 ml to 30 g/100 ml. The diffusion coefficient in this range decreased from 7.5 x 10^(-7) cm^2/sec to 1.6 x 10^(-7) cm^2/sec

    Spin-Wave Lifetimes Throughout the Brillouin Zone

    Full text link
    We use a neutron spin-echo method with μ\mueV resolution to determine the lifetimes of spin waves in the prototypical antiferromagnet MnF2_2 over the entire Brillouin zone. A theory based on the interaction of magnons with longitudinal spin fluctuations provides an excellent, parameter-free description of the data, except at the lowest momenta and temperatures. This is surprising, given the prominence of alternative theories based on magnon-magnon interactions in the literature. The results and technique open up a new avenue for the investigation of fundamental concepts in magnetism. The technique also allows measurement of the lifetimes of other elementary excitations (such as lattice vibrations) throughout the Brillouin zone.Comment: 12 pages, 4 figure

    Assessing the Effectiveness of a Computer Simulation in Introductory Undergraduate Environments

    Get PDF
    We present studies documenting the effectiveness of using a computer simulation, specifically the Circuit Construction Kit (CCK) developed as part of the Physics Education Technology Project (PhET) [1, 2], in two environments: an interactive college lecture and an inquiry-based laboratory. In the first study conducted in lecture, we compared students viewing CCK to viewing a traditional demonstration during Peer Instruction [3]. Students viewing CCK had a 47% larger relative gain (11% absolute gain) on measures of conceptual understanding compared to traditional demonstrations. These results led us to study the impact of the simulation's explicit representation for visualizing current flow in a laboratory environment, where we removed this feature for a subset of students. Students using CCK with or without the explicit visualization of current performed similarly to each other on common exam questions. Although the majority of students in both groups favored the use of CCK over real circuit equipment, the students who used CCK without the explicit current model favored the simulation more than the other grou

    Momentum-resolved electron-phonon interaction in lead determined by neutron resonance spin-echo spectroscopy

    Get PDF
    Neutron resonance spin-echo spectroscopy was used to monitor the temperature evolution of the linewidths of transverse acoustic phonons in lead across the superconducting transition temperature, TcT_c, over an extended range of the Brillouin zone. For phonons with energies below the superconducting energy gap, a linewidth reduction of maximum amplitude ∼6μ\sim 6 \mueV was observed below TcT_c. The electron-phonon contribution to the phonon lifetime extracted from these data is in satisfactory overall agreement with {\it ab-initio} lattice-dynamical calculations, but significant deviations are found

    Energy Gaps and Kohn Anomalies in Elemental Superconductors

    Full text link
    The momentum and temperature dependence of the lifetimes of acoustic phonons in the elemental superconductors Pb and Nb was determined by resonant spin-echo spectroscopy with neutrons. In both elements, the superconducting energy gap extracted from these measurements was found to converge with sharp anomalies originating from Fermi-surface nesting (Kohn anomalies) at low temperatures. The results indicate electron many-body correlations beyond the standard theoretical framework for conventional superconductivity. A possible mechanism is the interplay between superconductivity and spin- or charge-density-wave fluctuations, which may induce dynamical nesting of the Fermi surface

    Stellar Associations and their Field East of LMC 4 in the Large Magellanic Cloud

    Get PDF
    We report about the stellar content and the luminosity and mass functions of three stellar associations and their field located on the north-east edge of the super-bubble LMC 4 in the Large Magellanic Cloud.Comment: To be appeared in the meeting Proceedings of ``Modes of Star Formation and the Origin of Field Populations'', Heidelberg, Germany, October 2000; to be published in the ASP Conference Series, edited by E. K. Grebel and W. Brandne
    • …
    corecore