2,943 research outputs found

    Stellar Over-densities in the Outer Halo of the Milky Way

    Full text link
    This study presents a tomographic survey of a subset of the outer halo (10-40 kpc) drawn from the Sloan Digital Sky Survey Data Release 6. Halo substructure on spatial scales of >3>3 degrees is revealed as an excess in the local density of sub-giant stars. With an appropriate assumption of a model stellar isochrone it is possible for us to then derive distances to the sub-giant population. We describe three new candidate halo substructures; the 160- and 180-degree over-densities (at distances of 17 and 19 kpc respectively and radii of 1.3 and 1.5 kpc respectively) and an extended feature at 28 kpc that covers at least 162 square degrees, the Virgo Equatorial Stream. In addition, we recover the Sagittarius dwarf galaxy (Sgr) leading arm material and the Virgo Over-density. The derived distances, together with the number of sub-giant stars associated with each substructure, enables us to derive the integrated luminosity for the features. The tenuous, low surface brightness of the features strongly suggests an origin from the tidal disruption of an accreted galaxy or galaxies. Given the dominance of the tidal debris of Sgr in this region of the sky we investigate if our observations can be accommodated by tidal disruption models for Sgr. The clear discordance between observations and model predictions for known Sgr features means it is difficult to tell unambiguously if the new substructures are related to Sgr or not. Radial velocities in the stellar over-densities will be critical in establishing their origins.Comment: 14 pages, 7 figures, PASA accepte

    Dynamic effects induced by renormalization in anisotropic pattern forming systems

    Full text link
    The dynamics of patterns in large two-dimensional domains remains a challenge in non-equilibrium phenomena. Often it is addressed through mild extensions of one-dimensional equations. We show that full 2D generalizations of the latter can lead to unexpected dynamical behavior. As an example we consider the anisotropic Kuramoto-Sivashinsky equation, that is a generic model of anisotropic pattern forming systems and has been derived in different instances of thin film dynamics. A rotation of a ripple pattern by 90∘90^{\circ} occurs in the system evolution when nonlinearities are strongly suppressed along one direction. This effect originates in non-linear parameter renormalization at different rates in the two system dimensions, showing a dynamical interplay between scale invariance and wavelength selection. Potential experimental realizations of this phenomenon are identified.Comment: 5 pages, 3 figures; supplemental material available at journal web page and/or on reques

    Second-Order Self-Consistent-Field Density-Matrix Renormalization Group

    Full text link
    We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based on a direct minimization of an energy expression which is correct to second-order with respect to changes in the molecular orbital basis. We exploit a simultaneous optimization of the MPS wave function and molecular orbitals in order to achieve quadratic convergence. In contrast to previously reported (augmented Hessian) Newton-Raphson and super-configuration-interaction algorithms for DMRG-SCF, energy convergence beyond a quadratic scaling is possible in our ansatz. Discarding the set of redundant active-active orbital rotations, the DMRG-SCF energy converges typically within two to four cycles of the self-consistent procedureComment: 40 pages, 5 figures, 3 table
    • …
    corecore