715 research outputs found

    The origin of amorphous rims on lunar plagioclase grains: Solar wind damage or vapor condensates

    Get PDF
    A distinctive feature of micron sized plagioclase grains from mature lunar soils is a thin (20 to 100 nm) amorphous rim surrounding the grains. These rims were originally described from high voltage electron microscope observations of lunar plagioclase grains by Dran et al., who observed rims up to 100 nm thick on plagioclase grains from Apollo 11 and 12 soils. These rims are believed to be the product of solar wind damage. The amorphous rims were studied on micron sized plagioclase grains from a mature Apollo 16 soil using a JEOL 200FX transmission electron microscope equipped with an energy dispersive x ray spectrometer. It was found that the amorphous rims are compositionally distinct from the interior plagioclase and it is proposed that a major component of vapor condensates is present in the rims

    Mineralogy and Petrography of MIL 090001, a Highly Altered CV Chondrite from the Reduced Sub-Group

    Get PDF
    MIL 090001 is a large (greater than 6 kg) CV chondrite from the reduced subgroup (CV(sub red)) that was recovered during the 2009-2010 ANSMET field season [1]. The CV(sub red) subgroup meteorites retain primitive characteristics and have escaped the Na and Fe meta-somatism that affected the oxidized (CV(sub ox)) subgroups. MIL 090001 is, however, reported to be altered [1], and thus a major objective of this study is to characterize its mineralogy and petrography and the extent of the alteration

    Transmission electron microscopy of an interplanetary dust particle with links to CI chondrites

    Get PDF
    The majority of hydrated interplanetary dust particles (IDPs) have compositions that resemble CI and CM chondrites, however, their mineralogies are most similar to the fine grained material in certain altered type-3 carbonaceous and ordinary chondrites. During the transmission electron microscope studies of hydrated IDPs, a unique particle was discovered whose mineralogy is very similar to that reported from CI chondrites. W7013F5 is the first IDP whose mineralogy and chemistry approximates that of CI chondrites. The similarity in mineralogy and mineral chemistry suggests that W7013F5 was altered under conditions similar to those that existed on the CI parent bodies

    Heterogeneous plagioclase compositions in the Maralinga CK4 chondrite

    Get PDF
    One of the characteristic features of CK chondrites is the wide compositional range displayed by feldspar grains in matrix relative to the narrow range of compositions exhibited by the highly equilibrated olivines and pyroxenes. Recently, it was suggested that these heterogeneous feldspar compositions may have been strongly influenced by shock metamorphisms. It is shown that the apparent range of feldspar compositions in Maralinga probably results from annealing during parent body thermal metamorphism rather than shock. The majority of matrix feldspars in Maralinga are typically 50 microns in size and are compositionally zoned, with oligoclase cores (approximately An40) and bytownite rims (approximately An80). The contact between core and rim is sharp and abrupt and is readily observed in backscattered scanning electron microscopy (SEM) images

    Impact glasses from the less than 20-micrometer fraction of Apollo 17 soils 72501 and 78221

    Get PDF
    The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes that accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact-induced chemical fractionation. Among these are HASP glasses (high-Al, Si-poor), which are believed to represent the refractory residuum left after the loss of volatile elements (e.g., Si, Fe, Na) from the precursor material. In addition to HASP-type glasses, we also observed a group of volatile-rich, Al-poor (VRAP) glasses that represent condensates of vaporized volatile constituents, and are complementary to the HASP compositions. High-Ti glasses were also found during the course of this study, and are documented here for the first time

    Transmission electron microscope studies of extraterrestrial materials

    Get PDF
    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal

    Relative Sputtering Rates of FeS, MgS, and Mg Silicates: Implications for ISM Gas Phase Depletions of Rock-Forming Elements

    Get PDF
    Astronomical measurements of S abundances in the diffuse interstellar medium (ISM) indicate ionized S is a dominant species with little (< 5%) S residing in grains (e.g. Jenkins 2009). This is an enigmatic result, given that abundant Fe-sulfide grains are observed in dust around pre- and post-main sequence stars and are also observed as major components of primitive meteoritic and cometary samples. These disparate observations suggest that the lifetime of sulfide grains in the ISM is short because of destruction processes. Our previous work has shown that FeS and MgS retain their crystallinity and do not amorphize during radiation processing, whereas enstatite and forsterite are readily amorphized. We have extended this study to measure the relative sputtering rates of FeS and MgS compared to enstatite and forsterite. Irradiation of FeS with 4 keV He+ results in preferential sputtering of S and the formation of a thin 2-3 nm, compact Fe metal layer that armors the surface. The zone of S loss extends to a depth of ~8-10 nm below the exposed surface. Despite this S loss, the FeS retains its crystallinity and shows no sign of incipient amorphization. Irradiation of FeS with 5kV Ga+ in a focused ion beam (FIB) instrument resulted in preferential sputtering of S and the formation of a 5-8-nm thick surface layer of nanophase Fe metal. X-ray mapping shows that the zone of S sputtering extends to a depth of nearly 20 nm, but there is no evidence for FeS amorphization, consistent with our previous work. The irradiation experiments show that the relative sputtering rate of FeS and MgS are much higher than olivine or enstatite. Sputtering experiments utilizing 30 kV and 5 kV Ga ions in the FIB produced volume loss in troilite that was ~4X greater than in enstatite or forsterite. The sputter yield under these conditions is such that for every Si atom sputtered from enstatite, ~14 S atoms are sputtered from FeS. We have performed similar sputtering experiments on Fe-bearing niningerite (MgS) and co-existing enstatite from the ALH 84170 EH3 chondrite. MgS also sputters much more rapidly than enstatite with a relative Si:S sputter yield of 1:8. For MgS, sulfur is highly depleted at the surface and the S-depletion zone extends to a depth of ~15 nm (using 5 kV Ga+). There is a corresponding zone of Mg and especially Fe enrichment that extends from 5 to ~10 nm below the surface, respectively. The dominant grain destruction mechanism in the ISM is sputtering from passage of supernova-generated shock waves. This process also results in the amorphization of crystalline silicates in the ISM. Our results indicate that FeS and MgS grains produced in evolved stars and injected into the ISM will be destroyed more rapidly than crystalline silicates. This process may account for the lack of significant depletion of S from the gas phase in the ISM. However, rare nanophase FeS grains occur as inclusions in circumstellar amorphous silicate grains found in comet dust particles analyzed in the laboratory. These results show that a finite amount of S in the ISM is sequestered in solid grains

    Irradiation Effects in Fosterrite and the Nature of Interstellar Grains: A Coordinated Spectroscopy and Electron Microscopy Study

    Get PDF
    Crystalline and amorphous silicates condense in the outflows of low mass evolved stars and massive red supergiant stars and are injected into the interstellar medium (ISM) where they are rendered almost completely amorphous by a multitude of destructive processes (e.g. shock, grain-grain collisions, and irradiation). Irradiation effects in particular may have played an important role in the genesis and modification of primitive grains in cometary dust, but unraveling those effects requires controlled experiments under appropriate conditions and with an emphasis on materials relevant to the ISM. Here we report our infrared (IR) microspectroscopy and trans-mission electron microscope (TEM) measurements on forsterite that was amorphized through irradiation by high energy heavy ions

    Formation and Processing of Amorphous Silicates in Primitive Carbonaceous Chondrites and Cometary Dust

    Get PDF
    Chondritic-porous interplanetary dust particles (CP IDPs) exhibit strongly heterogeneous and unequilibrated mineralogy at sub-micron scales, are enriched in carbon, nitrogen and volatile trace elements, and contain abundant presolar materials [1-4]. These observations suggest that CP IDPs have largely escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. CP IDPs are believed to represent direct samples of the building blocks of the Solar System - a complex mixture of nebular and presolar materials largely unperturbed by secondary processing. The chemical and isotopic properties of CP IDPs and their atmospheric entry velocities are also consistent with cometary origins. GEMS (glass with embedded metal and sulfides) grains are a major silicate component of CP IDPs. GEMS grains are < 0.5 microns in diameter objects that consist of numerous 10 to 50 nm-sized Fe-Ni metal and Fe-Ni sulfide grains dispersed in a Mg-Si-Al-Fe amorphous silicate matrix [2, 5]. Based on their chemistry and isotopic compositions, most GEMS appear to be non-equilibrium condensates from the early solar nebula [2]. If GEMS grains are a common nebular product, then they should also be abundant in the matrices of the most physically primitive chondritic meteorites. Although amorphous silicates are common in the most primitive meteorites [6-9], their relationship to GEMS grains and the extent to which their compositions and microstructure have been affected by parent body processing (oxidation and aqueous alteration) is poorly constrained. Here we compare and contrast the chemical, microstructural and isotopic properties of amorphous silicates in primitive carbonaceous chondrites to GEMS grains in IDPs
    • …
    corecore